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1 ACCELERATING FIELDS INSIDE A GUIDE -

GENERIC

Future generations of colliders are a hot speculating subject, due to high costs of standard
techniques. It becomes now clear that projects of klystron and standard electron optics for
HEP colliders are cumbersome, not enough performing for High Energy Physic objectives,
and above all budgets of our present world.

Among new acceleration techniques, oriented to compacity, are laser plasma and -with
relatively low cost machines- dielectric acceleration. Last technique subdivides into THz
modes-smaller copy of standard above techniques- and photonics, for instance « on-chip
accelerator »[2].

For these last acceleration schemes and non conventional techniques, we need to better
know the behaviour of electromagnetic fields inside guides. We can mention such guides
like photonic gap, rectangular strip lines and circular dielectric guides with metallic sheath
(metallized fiber).

Metallized dielectric fibers are planned to be used for some THz schemes, although
their advantage is not so clear for photonics. Indeed, a skilled combination of indexes in
optical fibers, could permit to skip the use of metallic sheet, by naturally mismatching
the radial infinite component of fields.

The present study deals with the description and the analytical simulation of electro-
magnetic fields and of their modes inside a dielectric multi layers dielectric fiber covered
with metallic sheet1. It presents also the first draft of a simulation code, which is a trans-
lation of an existing fortran code ; the principle of the code, and theoretical foundations,
have been also described in the Master Thesis in reference [26].

Of course we could have re-used that code as-is, since fortran compilers are yet active
for PCs, but the version was only a part of several codes -non documented- and it was
estimated more efficient to develop a similar code with a real friendly interface (which was
not the case) and modern languages. Incidentally some unclear points were found in the
original text of the Thesis and inside the associated fortran code, so it was an additional
reason for starting from scratch.

Our choice has been oriented to Debian linux machines, with open source codes ; the
code is implemented in a local mode ; all the tools are exportable easily in a notebook
way, like Jupyter notebook.

A gnome-like interface based on Gtk+ widgets is to be implemented.
For the computation, I use Julia language [8]2, which may be chained with the Gtk

interface.

1in all the following, named multilayered dielectric fiber
2Julia has many advantages over tools like Matlab, for instance a very fast compiler, near the speed

of C/C++ compilers

4



That publication presents the following chapters :

1. recalls of theoretical basis of electromagnetic modes inside a multi-layer dielectric
fiber,

2. description of the code

3. a few illustrative examples

As many points are detailed in [26], some recalls are added for that code comprehen-
sion, and some items are found in it, obscure or somehow inexact, inviting the reader to
report to that reference if necessary.

The « Eigen Mode » is provided by many softwares, like OpenEMS[11]. Benchmarking
with commercial codes should be planned during/as soon as the code reaches a stable
status.
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2 HYBRID MODES INSIDE A CYLINDRICAL COA-

TED GUIDE

Among numerous references, Harrington [4] describes hybrid electromagnetic modes. In-
deed, if we let propagate electromagnetic energy inside a void guide (with no dielectric
inside, but only vacuum/air), the elementary quantified solutions are TE and TM modes,
which are not coupled. A TE mode, which has only a longitudinal magnetic component,
can exist by itself without any other TM contribution, and conversely, it is theoretically
possible to induce electric acceleration, for instance with a pure TM01 mode.

The situation is not as trivial if circular dielectric layer(s) are inserted inside the geome-
try. Instead observing pure TE/TM modes, we notice a combination of these, particularly
a mixture of magnetic and electric longitudinal components. Their conventional notation
becomes HExy or EHxy, depending on whether E or H component is predominant, and
they constitute a -non complete but degenerate- basis in vectored sense[12]. EM Mode
analysis have of course a major importance for acceleration designs, while the Thesis in
reference manifests no interest in acceleration, only in study of propagation and losses of
the transverses modes. Indeed, its original application was the evaluation of mode atte-
nuation by feedthroughs of shielded enclosure. It explains why no Ez or Hz result was
reported in the original program.

Last of all, if we are interested by polarised fields, we may prefer the LPmn basis [14].
LPmn, asymptotic of HE/EH, are allowed to radiate in space, due to absence of external
metallic wall, which implies that limit conditions are different. Moreover, LPmn is an
approximate basis due to coarse hypothesis of potentials and field continuity across inter-
faces, adapted to low contrasts permittivities, and having degeneracies. Hybrid HE/HE
take better into account the details of accelerating and deflecting fields of electron optics.

2.1 Classification of hybrid HE/EH modes

As that part will superpose a very studied question, it will be only summarised. As we
should like to create a basis, similarly as pure basis TE/TM, the following tentatives were
done in the past, to distinguish HE and EH modes, and to enumerate them :

1. to compare the relative amplitude of Ez viz Hz,

2. to quantify it by a factor of merit, [17], [9]

3. to identify a HE,resp EH mode by its asymptotic TE, resp TM companion for
-nearly- homogeneous guide,[26]

4. to add some low losses amount and to break degeneracy’s around cutoff frequency
[26]

The first method is far too qualitative, does not bring a reliable classification, and
necessitates an a-priori numerical knowledge of z-field components. The second method
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is well adapted to dielectric systems like optical fibers, but does not apply to every confi-
gurations. Last both methods may be combined and to define HE/EHmn. Relative to
(non-linear and) anisotropic materials, [16], only first criterion, allied to study of power
loss has been possible, and HE/EH indexes mn may not be defined.

Let’s take a hollow cylindrical metallic guide of internal void radius a, suppose it
oversized (a >> λ), and recall properties of cylindrical TE,TM modes [22] :

TEmn(J ′n(τmn) = 0) TE11(1.841) TE01(3.83) TE12(5.33) TE02(7.016)
TMmn(Jn(τmn) = 0) TM01(2.405) TM11(3.83) TM02(5.52) TM12(7.016)

The cutoff frequency being fc = cτmn

2πa
, where τmn is either the zero of the Bessel or its

derivative, the modes have been ordered in growing frequency occurrence. One guesses
that excitation at frequency ∝ 3.83 should hybridise easily TE12 and TM02. We could
call hybrid child, HE12 or EH02

3. Moreover, the frequency criteria is enforced by a similar
azimutal distribution. But also, generally, the experimental excitations are not pure CW,
their bandwidth may cover the frequencies 1.841 and 2.405. It is known that due to
losses of high orders, lowest order modes are leaders. So the « deflecting mode » HE11 (or
EH01 ?) will often occur.

But there is no gold rule to forbid a coupling between TE11 and TM12 (HE11, EH12) !
We just assume that EH12’s amplitude will be low relatively to the precedent ones. Note
that it is necessary to enumerate both HE and EH modes to come back bijectively to pure
TE/TM components. Finally we don’t exclude triplet or higher hybridisation, for instance
in adiabatic phases of transient configurations, but in practice, the N-bodies systems fall
in attractive basins of more stable 2-bodies.

It is deduced that HE/EHmn family denomination concept, based on the correspon-
ding name of the asymptotic companion, is today pertinent at least for linear inhomo-
geneous dielectric or magnetic guides with step or graded indexes, in optical fibres and
hollow cladded metallic guides, and we experimented last methods for their classification.
It is expected that it may be extended to frequency dependant permittivities, provided
that they are isotropic and linear, which is an important case for THz or dielectric accele-
ration of particles. An extension of that convention to gyromagnetic materials with tensor
permittivities, seems to be successful [25]. Our corresponding code is to be updated for
taking account frequency dependant permittivities, soon.

3the standard denomination is however TE11, TM11− > HE/EH11
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2.2 Topology of modal space and basis completion

Here are placed some out-of-concern ideas, generated by the present study. Being inserted
in the Introduction, they have no implication and that part may be skipped.

There are several concepts around topological states, linking the Maxwell equations
with Dirac one,[5], and applied to cylindrical geometries showing equivalence with boun-
ded Jackiw-Rebbi states. They all rely on Index Theorem, ie searching topological inva-
riant linked with the (eigen) modes.

Here, we analyse rather the continuous transition between « pure modes » and hybrid
one, and it suggests to consider them as immersed in the topological hypersurface structure
of a differential manifold, [18] which we denote by « modal manifold ». Firstly, we exploit
the interesting remark from Hahn [3]. starting from the (complex) vector dispersion law :
k2

i = k2
z + k2

ρ, (i, index of the medium), we see that in the neighbourhood of cutoff, ki ∼
kz, so the mode has its wave vector nearly parallel with propagation direction. Inversely,
at high frequencies asymptote, ki ∼ kρ, and pure TE/TM modes behave as quasi-TEM
waves. Moreover, they become degenerate, which we show later in the dispersion curves
of HE11 mode.

Now let’s try to build on a proper differential manifold structure. We need to define
a congruence, and a C∞ parametering of the modal TE and TM curves, on the modal
surface. We can imagine a 2D parametering by frequency or pulsation ω, and ratio a

b
.

Indeed, they are the sole continuous parameters, allowing an easy congruence, because,
consequence of the limit conditions at interfaces, all electromagnetic functions may gene-
rally become discontinuous « one time in their life ».

Given a point M(r) inside a constant permittivity medium, and belonging to geome-
trical space, we describe an associated modal point M in modal space by its coordinates
M(ω, a

b
), intersection of the TE(ω) and TM(a

b
) curves. As usual, the tangent vectors are

defined by ∂
∂ω

(resp.) ∂
∂ a

b

.

Knowing that we travel along a mode when we vary the scalar potentials, these vectors
may be linked to wave vectors. The ki wave vector is fixed and allows to orient the modal
space, let it define sometime linked to the local curvature at M. We choose the kz one as
tangent vector of the TE or TM curve, so kT E

z = ∂
∂ω

(so the M(ω, .) curve, is merely a
dispersion curve), replacing TE by TM for TM mode.

As TE and TM are in principle independent decoupled solutions, there tangent vectors
define a basis of the tangent plane at M. So inside that tangent plane which is a vector
space, the HE and EH wave-vectors may be defined. A proposal of modal space is given by
the figure 1. Here we represent only the frequency sheet. a

b
one may be viewed as travelling

along axis, or creating new sheet (non represented). Generalisation to multi-layers drives
to higher dimensional manifold, but the concept becomes more intricate4.

As we don’t examine for now, events before cutoff, we bound the modal space by
2 edges, each for TE and TM. These modes are independent near cutoff, so the edges,
parallel to ki, then vertical, belong to 2 distinct sheets. The ψ network must define M with
1-1 correspondence, so the 2 congruences must cross. We have drawn an intermediate point
M, where coupling TM/TM starts to be significant. Then ke

z and km
z , the projections of ki

4except with 3 media, which is out of present publication
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Figure 1 : Proposal of modal space

on the 2 congruences, are independent vectors, and define the tangent plane Tf (M), where
in that basis, we can now define the wave vectors of HE and EH modes (red curves). When
frequency raises, as described, the longitudinal wave vectors become parallel, reflecting
degeneracy, and their amplitude decreases. The topological structure is here homotopic
to a plane.

2.3 Basis of VPM

There are several methods for the computation of the fields, by Green functions by the
Method of Moments (MoM), Multipole development, by Hertz vector, by Vector Potentials
Method (VPM), they may be found in classical references [7]. However, in antenna or wave
guide applications, the last method by Vector Potential Method (VPM), partly used by
MoM, is well suited for analytical representation5

The main principle of VPM is to deduce the fields and potentials of a mode, starting
from the axial wave vector, solution of Helmotz/Maxwell propagation equation. It is
detailed in annex.

It is well known that in cylindrical coordinates, the axial vector kz decomposes as the
complex vector identity, k2 = k2

ρ + k2
z , where k2 only depends on dielectric interfaces.

However, as we have many interfaces, the equations are coupled, and non linear, so kz of
hybrid mode, is for now only computed numerically. The continuity relations bring us to
a matrix system AC = 0, which is inverted to determine the solution(s) kz, and the fields
coefficients of hybrid mode HE or EH, which are combination of pure TE and TM one.

So knowledge of kz allows to describe the transversal field structure of hybrid modes
by kρ, which depends on geometry and permittivity of interfaces. That second part may
be done analytically, by Maxwell equations, where field components, due to cylindrical
symmetry, are expressed by special Bessel functions.

It resumes the minimal algorithm for achieving computation of the potentials/fields
and determination of the modes inside a hollow dielectric guide, in the frequency spectrum.
There are of course refinements which were added to the algorithm. It will be stressed in
the code description, in the second part.

5Vector Potential Method, as restricted to scalar potentials, does not coincide but share some principles
with Hertz Vector theory, see [23]
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To be synthetic, the calculus progresses with following steps :

1. input of parameters : permittivity of dielectric layers, n-order of the mode6, fre-
quency, geometrical section and length of the guide, . . .

2. automatic building of matrix A, given the dimension (number of layers) of the
problem

3. solve detA = 0, then determination of the longitudinal constant(s) of the modes,
and computation of corresponding kρs

4. solve AC = −a to determine the C(s) coefficients

5. analytical computation of the scalar potentials and electromagnetic fields

6let’s recall that the m of J/Nm coincides with the TE/TMmn and cos/sin(mφ+ . . .), where m is the
order of the J/N, and n its nth zero ; anyway the situation is less clear for hybrid modes, it deals with
their nomenclature. That topic has been evocated in 2.1

10



3 CODE DESCRIPTION

3.1 General

The entire code subdivides into code interface (Gtk+ widgets) for inputting parameters,
and calculus in Julia.

It has been designed for local machine, but could be paralleled, Julia offering an -
experimental- multi-threading support. Anyway, the total run time for computation of 2
dielectric layers with one frequency is typically O(s), and the procedure is sequential, so
for now the translation is not well adapted to parallelism, and it appears not necessary.

Regarding the work amplitude to explore the different physical cases even with 2
media, the present version of the code has been implemented for 2 layers only. Also,
acceleration application have been envisaged into a hollow metallized fiber, gained inside
with a thin layer, so the configuration is layer1=vacuum, layer2=dielectric, frontier=PEC
(Perfect Conductor), which is the 2 layers problem. Additionally, the generalisation for n
layers doesn’t bring thorny theoretical problems, nor add new physical landscape.

As in Julia, we can manage modules, it will be rather direct to build a new multi layer
module for future versions.

The today version subdivides into modules pictured by fig 2

USER

Interface

Guess of kz,

Conditionning datas

module Parametres

Building matrice

iteration solver for kz

module Matrice

HMC Code

ver 1.0

module Coe�cients

Depiautage matrice

solve for coe�cients

module Champs

Compute potentials

and �elds

Gtk+

Ju
li
a

Figure 2 : Actual version of code HMC ver 1.0

The following sections describe the different features of the β code, some of these had
to be tested in slightly modified fashion comparing to initial fortran code.
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3.2 Preparation and conditioning of the input parameters

In order to solve numerically detA = 0 by iteration, it is necessary to feed the code a
guessed value of the kz longitudinal constant, not to far from the solution. Of course, a
trained user, familiar with his physical problem will be able to provide reasonable values,
but in the general case, it is difficult to guess it from scratch.

So I tried to help user to dispose of such value, by semi automatic means. To illustrate
it, let’s choose, as in [4], a 2-layers system, constituted by a central cylindrical dielectric
(ǫ = 10) of radius a, immersed into a hollow cylindrical guide and let’s compute kz when
the ratio a

b
= α grows from 0 to 1. At α = 0, the configuration is a pure hollow vacuum

guide, so kz is easily given by (kz)1,2 =
√

k2
1,2 − (kr=b)2 where k2

1,2 = ω2
1,2ǫ1,2µ1,2, and

(kr=b)
2 = k2

2 − η1

b
. η1 = (1.841) is -for instance- the first zero of the derivative of Bessel

J1.
Conversely, when α = 1 (a=b), the guide is filled with dielectric, and the precedent

relation leads to (kz)1,2 =
√

k2
1,2 − (kr=b)2 with (kr=b)

2 = k2
1 − η1

b
.

The corresponding graph of the reference [4] is given by the figure 3

Figure 3 : Graph of kz versus a/b

The values of the raccording points at α = 0 and α = 1 are correctly restated. Of
course, all the curve between these points, subject to hybrid modes, cannot be guessed
precisely. All we know is that curve transitions probably smoothly between these values7.

There are 2 main tentatives to build an « universal » shape of curve, among them fitting
the reference with spline or equivalent numerical method, or defining some analytical
empiric relation in some regions of the curve. The spline method has the limitation that
it necessitates an experimental or published curve, given the permittivity which can differ
from one application to another.

The qualitative approach should be the best one. First constatation is that the curve
has generally 1 change of curvature and a part, fastly growing, when the curvature is

7in case of inverse problem with ǫ1 = 1 and ǫ2 > 1, which is the case with THz projects in hollow
fiber, the raccording points of the curve may be obviously inverted
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quasi null. Secondly, at the neighbouring of limit points, the curve variation is quite low,
so we can approximate it by the extension of the pure modes. Saying it differently, for
the neighbouring of the limit points, the real mode is close to pure TE11 mode, with
modulation of dielectric index. These 2 zones extend relatively far from the limit points.

For the central part, a fast try on an empiric form like

f(α) =
η1b

b2 + exp
α2

τ
−1

(1)

with kz =
√

k2
2 − (f(α))2 and τ ∼ 0.27 gives approximate fit. Much fundamental effort

could be expanded to understand these transitions, for instance by approximations of
special functions in adequate domains.

Moreover, when the empiric curve is added to the datas, we need to join it with the
precedent low variation segments. It is relatively easy done by the code.

The precedent considerations must not lead us to forget that the built curve is only a
help to the user, in order to provide a guess of kz not too far from the exact one.

Lastly, 2 additional values aside form that central guessed value of kz are determined
by a criteria on amplitude variation on the curve. The set of 3 values is necessary for
Muller algorithm, see the annex.

3.3 Building the matrix and solving for longitudinal propaga-

tion constant

Once input datas are defined and first guesses of kz by the modes_parameter module,
they are injected inside the module mode_matrix. The module calculates in loop, the
final value of kz by building at each iteration, the matrix A(kz) and computing det(A).

Concerning the coefficients, they are obtained by knowledge of the values of Special
Functions like Bessel and Neumann. There is a module SpecialFunctions we can import
in Julia, but even if it is efficient, based on fortran libraries, it doesn’t provide some
derivatives.

So you must use mathematical relations to find them. Let’s recall [1], and NIST, [13].
We need the values of J

′

n and N
′

n. We use [13] :

C ′

ν(z) = −Cν+1(z) +
ν

z
Cν(z) (2)

where C stands for any special Jn or Nn, Hankel, . . . functions.
8

Regarding the algorithm of convergence, [26] uses Muller method, which order of
convergence may be 1,84. I investigated if other performant numerical methods could be

8Using that relation, one must take care that z = kr in our case. Derivation should apply only to r,
so we should have

dJn(kr)

dr
=
dkr

dr

d

dkr
Jn(kr) = k

dJn(kr)

dkr
= k

dJn(kr)

dkr
= k[−Jn+1(kr)+

n

kr
Jn(kr)] = −kJn+1(kr)+

n

r
Jn(kr)

(3)
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as or more efficient. Certainly Newton Raphson algorithm has the best order of conver-
gence, 2, but I found no other algorithm than Muller able to deal with complex numbers for
transcendental equation f(z) = 0. Some of them exist but restricted to polynomials[21].
For improvement, an hybrid Muller and bisection method could be to consider [27], be-
cause there is a trade-off between order of convergence and stability, we shall see it in
results. Also let’s mention a complement about searching solutions of f(kz) = 0, where f
is transcendental. The main question is not to find an extremum of f, but to qualify it in
scope of physics landscape. Particularly for kz, the mode classification is central.

Indeed it is useful to remain that all wave numbers are a priori complex one. That
feature incorporates the losses by the expression

k = β + jα (4)

.
So I kept Muller method inside the module, and modified some Muller one for Julia,

to deal with complex numbers, and to include the matrix construction.
The Muller method necessitates 3 guesses, like those introduced above. I don’t discuss

the method, which is largely detailed by numerous references, but I enclose here the
figure 4, which depicts clearly the process. To be short, the 3 guesses defines a quadratic
curve, which parameters are found by the conditions stated on these 3 points ; at x=x0,
f(x)=f(x0), idem for x1,x2. Then 3 equations for a curve ax2 + bx+ c, allow us to find the
free unknowns a,b,c.

Inside the Muller method, I defined a type Function, and referenced it to the function
which build the matrix and computes its determinant. That procedure is very concise,
and lightens considerably the writing of the code.

The computation is fast, but must be controlled with the value of increment objective
δ (δ = xn − xn−1) and the maximum allowed number of iterations. Like the value of the
guesses in precedent module, it constitutes a critical step.

The final value of kz is transmitted to the following module.

3.4 Calculation of C coefficients

When kz is known, we can re build the final matrix A, and proceed to what I call « de-
piautage »

The « depiautage » uses typically 2 or 3 instructions of Julia. We dispose also of one
instruction for the determinant. Anyway, the syntax B = det(A) is not so trivial if one
goes deeper inside the source. det is in fact a collection of very sophisticated procedures,
which detect in first the pivots, if the matrix is singular, and make essentially a LU
decomposition9

Similarly, Algebra science has not evolved fundamentally since the original reference[26],
the most reasonable is to proceed to the standard LU decomposition and find the solutions
by backward substitution. What is new in Julia, is that you don’t need to implement the

9let’s recall that LU is made in the very general case, when the matrix has no symmetry ; in case of
any symmetry, det branches immediately to the adequate algorithm, ie Cholesky, and so on. . .
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Figure 4 : Principle of Muller method, after [26]

entire algorithm made in coherence with [15] because Julia disposes also of an integrate
function, which provides the LU decomposition and -important- the permutation vector
of the pivots.

Then if you write A′C ′ = a′, by LU you can also classically write PA′ = LU , then
A′ = P−1LU , where A’, respectively a’, are the « depiautage » of A and the residue of
that operation. C’ is « depiauted » from C by ignoring C11.

It follows that P−1LUC ′ = a′ ⇒ C ′ = U−1L−1Pa′, which gives us C’. We recover C
from C’, adding again C11.

3.5 Calculation of scalar potentials and electromagnetic compo-
nents

That final part should be the less difficult routine. However, first run did reveal a great
dump of datas, because user (me) asked for a volume bounded by zmax, rmax, and
phimax. Of course, performances of our machines allow such fluxes, but I felt more suited
to offer to the user, the possibility to compute a « slice » in r and/or φ. It constitutes
a great advantage of the frequency domain, so it is possible to visualise a sector of the
fields/potentials (z= cste, r variable,φ bounded variable), a section (z=cste, r,φ variable),
a longitudinal profile (r,φ,bounded variable,z variable),. . .
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It is easy to bound φ and z, but for r, the computation depends on the location of
rmin and rmax in regard to the multi layer geometry. So before the calculation, the set
(rmin, r1, rmax, r2,. . . ) must be automatically ordered.

A simple control flow leaded to correct order, and it has been possible to compute E
inside the bounds. For instance, the figure 5 shows a polar plot of the radial component
Er(r, φ, z) of a rod of a

b
= 0.5 of permittivity ǫr = 37.6 inside a cylindrical guide of

b = 0.012m, at frequency = 3GHz. The analysis windows are r ∈ [0.2b, 0.7b], and
φ ∈ [0◦, 150◦] and z = 0.0.

Figure 5 : Slice of Eρ, b=0.012m, a=0.5*b, rod of ǫ1 = 37.6,ǫ2 = 1.0,f = 3GHz
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4 DISCUSSION

4.1 Use of different Special Functions among publications

We have stated that EM fields are solutions of linear combinations of Jn and Nn where
Jn and Nn -last one, Neumann function in [26]- are first and second kind Bessel functions.
To precise, these notations refer in recent standard like NIST, to Jn and Yn notations,
confirming the validity of the calls in Julia (besselj and bessely routines)10.

Also, Hankel functions of first and second kind are sometime cited in literature. In
standard NIST notation, they are noted H1

ν and H2
ν , they are called Bessel functions of

3rd kind, and we have

H1resp2
ν = Jν + i(resp−)Yν (5)

11

so there is an equivalence in expressing the fields against Bessel or « Hankel » functions,
provided computing different coefficients

However we often find, for example [7], [17],. . . , formulations like

E,H ∝ AIn(kr) +BKn(kr) (6)

where In,Kn are described as modified Hankel function of the first,second kind. Again,
in actual standard conventions (NIST), In and Kn are respectively first and second kind
modified Bessel functions, also identically noted In and Kn.

[26] describes them in the case of losses, so its formulation is to replace Jn and Nn
(Yn) by In and Kn. Let’s note that In, Kn do not belong, for [7],. . . , to the case of metallic
cylinder dielectric loaded wave guide, but for a whole dielectric cylinder like step index
fiber, for example, and it is probable that losses are implicitly taken in account.

Moreover, it is well known [13], that changing the z in iz in Jn,Nn, results in finding
linear combinations of In and Kn. In fact, the choice of different functions -except the
trivial possibility to use linear combinations, results essentially from boundary conditions
or limit conditions, for example Kn has a good asymptotic behaviour to 0 at infinity, as
radiated field from 2 dielectrics wave guide if no metal shield encloses it.

So, excluding losses, the Whites formulation seems to be coherent. Concerning the
accurate study of modes, the case of high losses may be treated in future work.

Finally, the Harrington expressions seems to lead to an identical determinant as those
of Whites for 2 dielectric, where the 2 first columns are identical, and Harrington 3rd
column should be a linear combination of Whites one.

10In Abramowitz & Stegun old edition « Yν(z) is often denoted Nν(z) by physicist and European
workers »

11of course all the relations of that sections must be viewed in connection with a precise definition
domain
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4.2 Various divergences to [26]

It was noticed some points of divergence :

1. in the 2 dimensional matrix taken as example, page 17, line 5, instead E2 and E4 as
defined, Jn(kρ2b), Nn(kρ2b) ; also in line 6, instead of E’2 and E’4, J ′n(kρ2b), N

′n(kρ2b),
last rows E2, E4, E ′2, E ′4 are calculated with b argument, not a

2. for the derivation seen above, ambiguity between the r and ρ = kr arguments

3. idem p17, sign errors in A13,A14,A25,A26,A33,A34,A35,A36
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5 RESULTS

5.1 Characteristic curve kz = f(a/b) for different ratios a/b

That step may be very useful, because for the first hybrid modes, like built from TE11,
knowing the possible instability of Muller algorithm and its non physical insight, it should
be appreciated to have a precise value of kz(a/b). However, precise reference of the curve
shown in [4], describing kz/k0 = f(a/b) for HE11 mode, being an old archive, seems to
be difficult to find in the literature. Additionally, it may provide some criteria to access
to mode designation, as we shall see.

5.1.1 Numerical method

The hmc code finds a first guess of kz, via a preliminary module, and transmits it to
a second module. This last one computes a more precise solution via Muller method. A
variant of hmc has been automated to output the entire curve real(kz)/k0 = f(a/b).
That curve -the phase exponent of kz viz a

b
- is represented by the figure 7 for the HE11

mode.
Here is represented the following case described by Harrington at the figure 6, where

raccording curves is made between the asymptotes of void and filled guide. Here, k2
i =

ǫiµik
2
0, k0 = ω

c
and τ =

√
0.27 (see below for definition of τ). Of course it is in addition,

necessary to smooth the curve by simple numerical interpolations between its successive
points. Given radius a and b, a first trio of kz guesses is determined on that approximate
curve, with a given window (vertical distance between the 3 points).

The used window has been in practice, 10% of the maximum amplitude, around the
principal guess. The envelope of the curve approximates correctly the Harrington one.
However, numerous accidents occur in the transition zone, when a

b
∈ [0.2 − 0.4]. A simple

non automated computation for a = 0.028, then for the first accident of the curve, gave
a correct result. It was shown several reasons to these divergences. Firstly, as explained
above, some differences are noted with the Thesis in reference [26], specially on Bessel
derivatives. Moreover, and it seems to be the main contribution, the convergence test for
Muller procedure, dealing with complex numbers, should not be a comparison between the
moduli of the successive approximations, but between their real parts, knowing that
we searched for a real curve in our case. Finally, the determination of successive guesses
along the curve is not correct, beceause it drives to a stair case approximate curve. Last
point has been partly enlighted by the simulations of dispersion, see later in the document.
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Figure 6 : Harrington reference for HE11 Figure 7 : First calculation of HE11 mode
with a/b variable

Figure 8 : Optimised simulation, with re-
presentation of the first guess curves
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With the real part comparison criterion, the kz values are all real and lie between k1

and k2, with respective values 23 and 62. some analytical fit were tested to give a first
starting set of values for numerical guesses. For example :

k2
z = (k2

1 − te112

x2
) (7)

k2
z = (k2

2 − (te11 ∗ b)2

(b2 + e
a2

τ2 − 1)2
) (8)

Observation of the « abnormal points » of the first simulation, shows that they are
always associated with a significant imaginary part,O(1) witch sign may be positive or
negative. All other points of the envelope have a negligible imaginary part. As majority
of them are situated in the intermediary zone of hybrid modes, when a

b
∈ [0.2 − 0.4],

so it exists other solutions, firstly EH11, radiating modes, and coupling of forward and
backward waves inside the 2 media. Hence there is a doubt on the real smooth behaviour
of HE11 seen on the literature. A new simulation is driven with the modifications reported
above (see figure 8).

We could deduce some analogy with the LPlm modes of optical fibers[6]. However,
there is a major difference, ie the continuity equation in the last medium. The field is
not allowed to extend to infinity, due to metallized external « shooping » of the guide12.
So there is a possibility to encounter some reflections of the wave, resulting in unwanted
coupling, and accidents or abnormalities in the dispersion curve.

12For particle accelerators, the expansion of electromagnetic fields is to avoid outside of the guide, so
the necessity to shield it
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5.1.2 Help to user : guess of approximate kz=f(a/b) curve

We’ve seen that a first approximation for lossless media, allow us to inject guesses in the
numerical method and retrieve some results of the literature. Is there possible for other
more complicated cases ?

Firstly, let the solution be e−jkzz = e−jβzeαz with kz = β + jα 13,

1. if β >,< 0, we define a forward,backward wave,

2. if α < 0, wave is lossy (with proportion to quantify)

3. if α > 0, wave is of amplifying nature, which we assume non physical14

15

Let’s study the basic fundamental case, N = 1 mode. Given the hybrid mode be a
linear combination of TE11 and TM01 for instance, we graph the curves of the 2 basic
modes kz function of a

b
, with real and imaginary parts, and for inserting the ki. So there

are 2x4 cases (real and imaginary),

TE11(k1) = k2
1 − (te11/a)2limit of plain wave guide when a tends to b (9)

TE11(k2) = k2
2 − (te11/(b− a))2limit of void wave guide when a tends to 0 (10)

TM01(k1) = k2
1 − (tm01/a)2idem but for magnetic mode (11)

TM01(k2) = k2
2 − (tm01/(b− a))2 (12)

with multi connecting curves in order not to collapse T11(ki) to zero, and an algo-
rithm permitting a soft transition. Moreover, there are 2 cases, depending on real(ǫ1) ><
real(ǫ2), in fact, we must chose first and third equations in first case, and second/fourth
one, in the second case.

For instance, taking TE11(k1), a transition curve could be

TE11(k1) = k2
2 − (

te11 ∗ b
b2

+ exp(
a2

τ
) − 1)2 (13)

insuring the dispersion curve to converge to limit value of void wave guide(limit of
TE11 void guide, when r −→ 0 = with ǫ1 > ǫ2, example of the rod).

In addition, a fitting transition curve could be, for TE11(k2)(limit of TE11 void guide,
when r −→ 0 = with ǫ1 < ǫ2, example of the metallized fiber),

TE11(k2) = k2
1 − (

te11 ∗ b
1

(b−τ∗a)

2
+ exp( 1

(b−τ∗a)2 )
)2 (14)

,

13arbitrarily by electromagnetic -not quantum- usage
14non physical in CW assumption or viz energy balance, but it may easily violate that affirmation in

specific conditions, for instance transients, not belonging to the present scope
15here, α is understood to be a gain, contrary to [26]
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with τ = 1.01 and similar algorithm for magnetic case, replacing te11 by tm11
16

Taking the following examples in [26] :
Firstly, the Harrington reference, cited above, in order to calibrate our method :

1. a wave guide of b = 0.4λ with ǫ1 = 1O + 0.0j, and ǫ2 = 1.0 + 0.0j

2. frequency 1GHz

The testing curves for that example, are reported in the figure 9, where all the expres-
sions are reported.

We see that choosing the curve 1 (TE11) and curve 6 (TM11), and considering them,
seems to restitute the searched -approximate- curve17.

Another interesting case, for THz and dielectric acceleration with hollow metallic fiber,
is when ǫ1 = 1 and ǫ2 = 10

The curves are represented by the figure 10
Interestingly, the first TM curve is « non physical », which confirm the choice of curves

3,4 and 7,8. We see that again a coherent shape seems to appear for hybrid mode.
Now, let’s try lossy materials. Yet with [26], we chose in first, a low loss scenario

1. a wave guide of b = 0.5in with ǫ1 = 37.6 − 0.01j, with a
b

= 0.3646

2. an air 2nd dielectric with ǫ2 = 1.0 + 0.0j

3. frequency 4GHz

The curves are now represented by the figures 11
We again observe that the correct determination of low losses modes is curves 1,2 and

5,6. It is interesting to compare them with the same case, but with ǫ1 = 37.6 + 0.0im (no
loss). For the null loss case, the real parts are naturally unchanged, and the imaginary
one are null (or very low).

Coming back to low losses example, for electric case, as also waited, the imaginary
part is notable below the cutoff. When a

b
> 0.25, so with propagation, that part amount

to a fraction of unity and is stabilising to a constant. For the magnetic case, it converges
also to a constant, but more pronounced. An idea is to assume the searched hybrid mode
be a combination of electric and magnetic one, with coefficients resulting of proportions
between the phases constants of the two basic modes.

Numerically, let the asymptotes be, as shown in the figure 11 Imelectric(k) ∼ 2∗10−1 and
Immagnetic(k) ∼ 5, so the ratio between electric and magnetic modes will be e0.2

e−5 = 1.221
0.0067

=
181.3, which drives us to neglect magnetic component, in the frame of our approximations,
so hybrid mode will be very near from electric TE mode18.

16recall that te11 = 1.8412 and tm11 = 3.8332
17we numerate the curves from left to right and then from top to bottom, so curve 1 is yre, realTE11(k1)

and curve 5 is ure, TM11(k1)
18α > 0 for TE mode, normally non physical -amplifying- solution, but is low, so we make the hypothesis

that there has been an energy exchange from magnetic to electric mode, and it does not contradict the
fact that TM mode is negligible
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Figure 9 : Real and imaginary parts of TE11 and TM11 modes[26]

We now, take a case of high losses material19.

1. a wave guide of b = 0.6916in with ǫ1 = 23.9 − 15.296j, with a = 0.5008in

2. a Teflon dielectric of width b− a = 0.1908in with ǫ2 = 2.1 + 0.0j

3. frequency 3GHz

The curves are reported by the figure 12, see curves 1,2 and 5,6
Above cutoff, TE mode occurs with quasi null attenuation. Magnetic mode experiences

a high attenuation with a coefficient β > 103 so here also, TE mode is predominant.

In summary, for 2 media :

1. depending on whether ǫ1 > ǫ2 or ǫ1 < ǫ2 we have to deal with curves 1,2 and 5,6 or
3,4, and 7,8,

2. having determined the correct quattuor of curves, we inspect the values of imaginary
parts ; in many cases, we can consider that the predominant mode will emerge in a
ratio characteristic of corresponding losses of basic TE and TM components,

3. in specific configurations, the weights of TE and TM components may be equiva-
lent ; hypothetical method -to verify- should be to combine them with coefficients
approaching their respective exponential loss

19just taken here for demonstration of classification, because rigorously we should replace also the
Bessel functions by the modified one, in order to compare
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Figure 10 : Real and imaginary parts of TE11 and TM11 modes, inversion of indexes

That qualitative procedure seems not to have been reported still now, and may be
further automated inside the code. Also, the functions coded for losses materials have
been made coherent with those originally intended for no losses.
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Figure 11 : Low losses with b = 0.5in,ǫ1 = 37.6 − 0.01j, a
b

= 0.3646, 4GHz [26]

Figure 12 : High losses with b = 0.6916in,ǫ1 = 23.9 − 15.296j, a = 0.5008in, 4GHz [26]
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5.1.3 Analytical method

Starting from the determinant in [4], we can try to compute it analytically for n = 1, ie
for the HE11 mode.

We found explicitly

kz = ± ωa|k1k2|
k02

√
F1 ∗ F2 ∗ F3 ∗ F4

√

ǫ2kρ1F1 ∗ F ′3 − ǫ1kρ2F
′1 ∗ F3∗

√

µ2kρ1F2 ∗ F ′4 − µ1kρ2F ′2 ∗ F4

(15)
20

with the Harrington notations, ie

F1 = J1(kρ1a) (16)

F2 = F1 (17)

F3 = J1(kρ1a)N1(kρ2b) −N1(kρ2a)J1(kρ2b) (18)

F4 = J1(kρ2a)N ′

1(kρ2b) −N1(kρ2a)J ′

1(kρ2b) (19)

with « ’ » denote derivation in the argument z = kr. So we need inside the code, the
derivatives of J1 and N1, which we find applying successively the recurrence relation for
Bessel functions cited before. However, the characteristic equation is of course implicit in
addition to transcendental, because kz appears in arguments such kρir. Indeed let’s recall

that kρi =
√

(k2
i − kz2) with k2

i = ǫiµiω
2.

Knowing the approximate range of kz, we can solve numerically the dispersion relation,
and find the curve point by point. The procedure is based on interpolation : at each a/b
ratio, we try kz from 0 -where obviously |kz| < |f(kz)|- with positive step, to a threshold
until kz = f(kz) (or |kz - f(z)| = o(|kz|)) where f is our dispersion formula above.

The first results lead to high values of kz, compared to the reference and results above,
and it has to be continued. Also, the numerical trick used, makes travel across the value
k2 where argument is null, so there are divergences of the analytical approximation. That
value must be bypassed by the algorithm.

Finally no general analytical method seem to have been reported for high order modes,
so it presents a reduced interest.

20where the ± suggests a double direction of propagation
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5.2 Dispersion curves

Until now, we used largely the [26] results for a/b curves. In that reference, question arose
about kz = f(ω) curves, ie dispersion curves, and it was eluded by a trick consisting
instead of a/b, to define the quantity aω

αc
where α is a convenient parameter, and c the

light speed in vacuum. However, it is claimed to work if ǫµi do not change -which is the
case for the moment- but more delicate, the direct link between both quantities appears
not to be so simple.

For example, let’s consider even the first EM mode, N = 1, and a radius a not equal
to extreme cases of a ∼ 0 (void dielectric, or a ∼ b (full dielectric rod). It is clear that
the a/b point coincides neither with pure TE nor with pure TM, but is a combination of
both of them, with no trivial coefficients. In other point of view, the kz of pure TE mode
, parameterised by frequency for any a, lies in dispersion curves forming a congruence in
a manifold, and so lies those of TM mode, so the hybrid solution follows a -frequency or
a/b- path in that complex space. The essence of the complexity is the parametering of
that topological manifold. Geometrically a/b and ω parameters define mappings which
are not belonging to the same congruences.

Many other publications, for planar geometries [20], or cylindrical one [4], [20], witness
numerical methods only. In fact, as the zeros of J

′

ν and Jν are alternate, it is suggested as
in a/b approach, to build a guess curve, intermediate between 2 modes, and solve exactly
by Muller method. For example, for the N=1 mode, we could consider a combination of
TE11 and TM11 modes.

Recalling that

k2
z = (ǫµ)i(

ω

c
)2 − k2

ρ (20)

21,

and krho = τνij

(aorb−aorb)2 these curves behave like ±
√

(px2 − q), ie a quasi linear shape

as x high, and a real part above x =
√
qp, which is the cutoff frequency condition. Let’s

guess a law like kHE
z = ukT E

z + vkT M
z , kEH

z = kT M
z and try u = v = 1

2
. accounting the fact

that TM β curve for first mode, is under TE one, it ensures that HE lies inside both pure
modes, and EH under TM one.

Simulations have been made for the scenario of [26], ie β − ω curves for a rod-insert
guide, having a

b
= 0.788, b = 0.5in = 0.012m, ǫ1 = 37.6 + 0.0j, ǫ2 = 1 + 0.0j, and

µi = 1 + 0.0j. Dispersion results are conform to his reference curve fig 3.10. However, it
is often necessary to start near of the exact kz solution, to apply Muller method, and in
this case, even starting from the TE11 curve, which is very close to HE11 one, sometime
the solution forked abruptly to other values, EH11, and even complex kz. These results
are interesting because we should like to gather every kz(s), but we loose control on the
sole HE11 dispersion curve.

So we tried a first coarse scan firstly, for instance, from kz

40
to 3 ∗kz, and computed the

determinant of the matrix, which determinant is expected to be null or minimum. The
corresponding curve is shown at fig 13, for f = 3GHz, and in the same conditions of [26].

21where (ǫµ)i is a short for ǫiµi
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It is noticeable that large values of kz, above say 500, are to remove. Intuitively but with
no demonstration of that, kz being the image of the axial propagation speed, should be
probably less for the hybrid mode, than for the pure TE one, as described above, the 2
speeds should be near, at higher frequencies.

The region below kz = 500 is interesting. A first minimum is found, corresponding
to HE11, at approximately 300. A 2th minimum appears near from 200, probably due
to EH11. At last, there should be a -non waited minimum- near 50, at low kz. It signs
the existence of a new mode, which origin has to be explored, if there is no numerical
artefact. Note that with Muller method, we has confirmed the values of 301 and 228, for
respectively HE11 and EH11 modes22. Our scan differs notably from, and is more general
than the method of [26]. That last one aims to add some losses (via the permittivity)
to break the mode degeneracy in the kz computation. Let’s note also, that excepting the
minima, all the region below 500 is characterised by very low determinant values. We
suspect that it could be the zone of continuous modes, knowing that the modal pure basis
is incomplete, and the complete infinite basis, with a proper frequency domain and the
usual norm, immerse us into at least an Hilbert space.

In order to automate the process, the following of the method should be directly
inspired :

1. to proceed to a kz scan in the entire frequency interval,

2. to gather all the eigen values of kz, at each frequency of the domain,

3. to represent all of them on a kω graph

Then we are able to compute by Muller the precise values, restricting us to one-to-one
intervals with more precise guesses, and a general view on the dispersion behaviour.

That will be one of the topics TODO for next.

5.3 Computation of electromagnetic fields and potentials

5.3.1 Lossless example, dielectric rod guide at 1GHz

The lossless example of [26] is taken for comparison.
The loss modulus of precedent part for evaluating the longitudinal propagation ex-

ponent kz has been also ported for lossless case, and the results of dispersion curve are
very close to Whites and Harrington data.

They are reported in the table hereunder :

a/b kz/k0 kz kro1 kro2

0.1 0.70799 14.82 64.55 14.79
0.2 0.828 17.35 63.91 11.73
0.3 1.638 34.32 56.64 -j27.192
0.4 2.354 49.31 44.21 +j44.64

22we find different values, 301 viz 312 depending on whether we test the real value or the absolute one
into Muller procedure ; it has to be cleared
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Figure 13 : Scan of kz values at a fixed frequency

Knowing that k0 = 20.943,kro1 = ±
√

(k2
1 −k2

z), kro2 = ±
√

(k2
2 −k2

z), and k2
i = ǫiµik

2
0,all

values of kz agree well with [26] but in the last case, the code chose the plus sign for kro2,
so selecting values must be with care. Indeed, Helmholtz equation gives right to both
solutions.

The computed electric fields, see fig 14, 15, 16 and 17, even with the changed sign
for a = 0.4b, gave a correct accordance with the reference publication, but one must
keep aware of it for more complicated case, essentially because of the qualitative physical
image, of a « radially propagating » component.

We give also the computed magnetic fields, see fig 18, 19, 20 and 21, which shows that
these fields concentrate close to the first dielectric with low values of a, and are moving
near the frontier b, when a is rising.

All the curves are relative to HE11 mode, as n = 1,m = 1 and HE depends on the
sign of the ratio C11

C13

, here positive (Snitzer convention, as cited by [26]).
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Figure 14 : Frequency 1GHz, b = 0.4λ,ǫ1 =
10,ǫ2 = 1,µ1 = µ2 = 1, a = 0.1b

Figure 15 : a = 0.2b

Figure 16 : a = 0.3b Figure 17 : a = 0.4b
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Figure 18 : Frequency 1GHz, b = 0.4λ,ǫ1 =
10,ǫ2 = 1,µ1 = µ2 = 1, a = 0.1b

Figure 19 : a = 0.2b

Figure 20 : a = 0.3b Figure 21 : a = 0.4b
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The z-fields are given by the figures 22 for Ez and 23 for Hz, for a = 0.4b. The
accelerating field is maximum at r = 0.4b, more generally at the frontier of the 2 dielectrics,
but not efficient for r 6= a. Above dielectric 1, Ez is fastly decreasing. The magnetic field
is efficient at the frontier between the 2 dielectrics, but not active inside r < b. That
consideration may be transposed for other values of a.

Let’s recall that the present configuration pertains to the rod of radius a and ǫ = 10+j0
inserted inside vacuum ǫ = 1 + j0. That consideration may be transposed for other values
of a.

Figure 22 : Frequency 1GHz, b = 0.4λ, ǫ1 =
10, ǫ2 = 1, µ1 = µ2 = 1, a = 0.4b

Figure 23 : Frequency 1GHz, b = 0.4λ,ǫ1 =
10,ǫ2 = 1,µ1 = µ2 = 1,a = 0.4b
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5.3.2 Bounded guide, example in THz region

Our application is pertaining to dielectric acceleration, THz or photonic one, inside a
Dielectric coated Metallic Hollow Fiber DMHF,[24] and we can select for example

1. frequency 300GHz,

2. b = 0.4λ

3. metallized coating of width λ
10

A first exploration gives us the HE curve 24, which is represented hereafter.

Figure 24 : Erho,HE mode, fiber b = 0.4λ, f = 300GHz, rod 0.6mm, ǫ1 = 37.6,ǫ2 = 1.0

Some recent interesting researches deal with « colossal epsilon », so we can retain a
classical material, such as silicium (ǫ ∼ 10 + j0,µ = 1 + j0) and LSNO [10], see their
figure 4, which -however perhaps non ecological- is described essentially non magnetic in
THz range and presents approximately ǫ = 100 + jx and µ = 1 + j0 under 1THz. Losses
are not clearly explained, but it is hoped to be reduced. Phonon resonances being higher
in frequency range, we could also expect no non linearity, it is to be confirmed by tests in
THz dielectric acceleration environment. Another limit of VPM theory is Maxwell Wagner
relaxation induced by charges interfaces, in fact Maxwell equations must be corrected to
include second terms with charges and possibly currents. However, if it is neglected/not
useful, the actual code could be adapted to multi dielectric media.
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6 PERSPECTIVES

These studies may bring some insights in the particle acceleration topic, linked with
dielectric techniques ; they may generate new questions.

6.1 Elliptical guides

Preoccupations for elliptical guides occur due to 2 factors :

1. it is difficult to fabricate perfect circular guides in large lengths,

2. elliptic sections are in contrary, intentionally made for enhancing field polarisation

3. polarised fields may constitute an attractive feature in accelerators

Integration of elliptical geometries is not direct inside HMC ; it asks to add modules
for taking account Mathieu-Hill equations. However the formalism is driven once more by
Maxwell and eigen solutions by numerical techniques.

6.2 Losses

Given the « short » lengths of fibers in known planned experiments, losses could be studied
in the frame of quasi no loss approximation. However, in accurate designs, more studies
are necessary, and HMC may be optimised without much work to accommodate for them.

6.3 Magnetic materials

This seems an important topics, because of presence of magnetic devices, either for focu-
sing23, and the necessary magnetic impedimenta (vacuum, power,laser fields, . . . ) surroun-
ding the accelerating guide. The formalism of magnetic guides is to compare with [19],
who made an interesting analysis of magnetic driven modes inside rectangular and circu-
lar ferrites. For circular one, the classifications based on Polder tensor leads us to some
precautions to classify the modes. Here also, work may be conduct with HMC « greffons ».

6.4 Multi-layer extension

The THz accelerator applications are less oriented to multi-layer than photonic one. It is
why HMC has primarily be designed to bi-layer anlysis, as [24]. However, it is planned to
cover the ability of multilayer simulations.

6.5 Frequency dependant permittivity

It is certainly a hot aspect to improve in the code, and it is in course.

23but tomorrow replaced by photonic techniques
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7 CONCLUSION

The present version of HMC code aims to contribute to diagnosis of mode propagation
inside cylindrical guides filled with dielectric. Strong emphasis was made on the search for
axial propagation coefficients, which conditions the determination of the hybrid modes.
It is then the main contribution of our publication. It seems possible to proceed to a
systematic scan of solutions with an enough large window, and then to refine to exact
solutions with Muller method.

The code may further improve in many sides :

1. setting up entirely the USER interface, (only feasibility obtained)

2. improving the semi automatic help for kz guess,

3. generalising computation to multi layer nlayer > 2

4. providing files and plots of field components, power, potentials,. . .

Most of these « ToDo » are only time dependant, not really conceptually difficult,
except the second tasks (semi automatic help).

The tools applied to that type of problem are certainly translatable to other geometries,
for instance rectangular guides, even if the codes may be entirely different, the architecture
may remain with a USER interface and Julia code in modules.

Among improvements, -even if I investigated optimisations- the quality of program-
ming has to be greatly evolved, taking advantage of the best features of Julia : polymor-
phism, memory optimisation, speed, object orientation,. . .

Another application of the code is standing waves in cavities, where HMC could help
designers as soon as they keep symmetry. The feature of HMC is of course 3D, but restric-
ted to academical problems. It is stressed here that academic approach may contribute
to the RF and photonics expertise for accelerators.
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Annexe
Maxwell equations are developed in frequency domain, in homogeneous media :

∇ ∧E = −jωµH ∇.H = 0 (21)

∇ ∧H = (σ + jωǫ)E + J ∇.D = 0 (22)

Where J gathers all current sources (deliberately, J is not detailed, because it may
designate different sources depending on the application).

The vector potential concept, restricted to ψ,A is well known. However, let recall it
before generalising.

from ∇.H = 0 we deduce that H = ∇ ∧ A, where A is a magnetic vector potential.
But ∇ ∧ E = −jωµH implies that the quantity (E + jωµA) is a gradient, namely E =
−jωµA− ∇ψ. ψ is as usual the electric scalar potential. We have to better define A.

Reporting into the ∇ ∧ H . . ., and neglecting σ in an homogeneous dielectric like
material, we have

∇ ∧ ∇ ∧A = J + jωǫ(−jωµA− ∇φ) = J + k2A− jωǫφ (23)

where k = ω
√

(ǫµ)24.

Using the identity ∇ ∧ ∇ ∧ A = ∇(∇.A) − ∆A, we have :

∇(∇.A) − ∆A − k2A = J − ∇φ (24)

, so we are free to choose A as ∇.A = −jωǫφ.
Now we can write :

E = −jωµA+
1

jωǫ
∇(∇.A) (25)

H = ∇ ∧A (26)

Which expression looks familiar. Actually, Since Maxwell it is guessed that the elec-
tromagnetism has a strong duality feature25. So we have yet restricted our discussion to
electric current sources, but now we can superimpose magnetic current sources. We know
that in that case, Maxwell equations grow by the term M, where :

∇ ∧E = −jωH −M (27)

We then define the new Electric vector potential F by E = −∇ ∧ F , where we see
[4] a symmetrical correspondence between electric and magnetic relations. All the fields
E and H may be computed now from the vector potentials A and F. Here, the reference

24and where we chose more convenient the notation « k », instead of « β », which last one is taken as
loss coefficient by k = α+ jβ ; so kz

k0

shall denote the effective index, neff
25excepting the magnetic mono pole
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table has been reported :

E H
H -E
J M
A F

σ + jωǫ jωµ
k k
ν 1

ν

where ν =
√

µ
ǫ

is the wave impedance.

Then the total electric and magnetic fields are the superposition of electric and ma-
gnetic solutions, and from the relations deduced identically from, and by analogy with,
the preceding steps, we finally find :

E = −∇ ∧ F − jωA+
1

jωǫ
∇(∇.A) (28)

H = ∇ ∧A − jωF +
1

jωµ
(∇(∇.F ) (29)

.1 Solutions E,H in cylindrical coordinates

We can easily show that F and A are solution of wave equation, ie ∆A,F + k2A,F = 0.
So finding solutions A,F allows us to compute E,H.

In the particular case of pure TE/TM mode, and for i th concentric dielectric of the
guide, setting (r, φ, z) for cylindrical coordinates, we can choose the couples

Fi = 0 Ai = zψm
i for magnetic potentials (30)

Fi = zψm
i Ai = 0 for electric potentials (31)

26

With these choices, we find easily for the cylindrical field components(where for the
moment we have not added the dielectric layer index) :

Magnetic solution, E Magnetic solution, H Electric solution, E Electric solution, H
Er = 1

jωǫ
∂2

rzψ
m Hr = 1

r
∂φψ

m Er = −1
r
∂φψ

e Hr = 1
jωµ

∂2
rzψ

e

Ephi = 1
jωǫr

∂2
φzψ

m Hphi = −∂rψ
m Ephi = ∂rψ

e H = 1
jωµr

∂2
rzψ

e

Ez = 1
jωǫ

(k2ψ + ∂2
zψ

m) Hz = 0 Ez = 0 Hz = 1
jωµ

(k2ψ + ∂2
zψ

e)

26z is typed in bold for a vector notation ; then ψ = ψ(r, φ, z), is a scalar function. A and F are vectors.
So A = (0, 0, ψ(r, φ, z)) for instance
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where the notation is ∂2
xy. ≡ ∂2.

∂xy
. Magnetic solution is known as the TM mode, and

electric one as TE mode. Then E,Hhybrid = λE,HT M +ηE,HT E where λ, η are coefficients
to be determined. Here, all ǫ,µ,ψ, E and H must be understood with the index of the i th
dielectric.

.2 The guide is finite/infinite

Here our approach is splitting into 2 directions :

1. the length l of the guide is finite

2. the length l of the guide is infinite

In the first case, the guide constitutes a cavity (intentional or not). The longitudinal
constant of propagation kz are then discrete and quantified by kzl = mπ. The mode are
also hybrid but a new index is added, ie p. This case is of course very interesting for
acceleration purposes (for instance standing wave acceleration), but was let temporally
apart for studying the second case.

If l = +∞, ie the second case, the determination of kz is discussed in the following
parts. The acceleration applications are also important (travelling wave), knowing that
today their techniques distributes almost equally between standing and travelling modes.
In certain cases, a proportion of standing wave is also added in travelling techniques.

.3 Derivation of the superposition coefficients

We have seen that the hybrid modes are a linear combination of TE and TM modes. Then
the coefficients must be determined, but better than that, we can determine the scalar
potentials ψe and ψm in hybrid configuration, as superposition of the « pure » ψe and ψm

of the TE and TM modes, and apply directly the precedent relation to find E,H, so the
coefficients searching approach is now applied on the ψ functions. In that configuration,
we shall rather have :

ψe,m = λe,mψ
T E + ηe,mψ

T M (32)

Etot = Ee + Em (33)

where the scalar potentials are superposition, but fields are simply the sum of corres-
ponding electric and magnetic modes

We can easily show [7] that any such scalar potential ψ is also solution of the wave
equation, say ∆ψ + k2ψ = 0.

In cylindrical coordinates, the equation is separable, and the guessed scalar solution
ψ is known to be

ψi
n(r, φ, z) ≡ A(r) ∗B(φ) ∗ C(z) = Jn,Nn(ki

rr) ∗ cos(nφ) ∗ e−ki
zz (34)

.
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Here Jn,Nn are respectively Bessel and Neumann functions of n order27, and the wave
equation induces the relation :

(ki)2 = (ki
r)

2 + (kiz)2 (35)

k2 = ω
√
ǫµ is the wave number of the total propagation, decomposing into a radial

wave number kr and a longitudinal wave number kz, the index i being relative to the ith
dielectric.

Taking the notations of [26], and establishing the continuity relations of the E,H com-
ponents tangent to the dielectric surfaces, let

. . . ψm
i = [Ci1Jn(ki

rr) + Ci2Nn(ki
rr)]cos(nφ)e−kzz (36)

ψe
i = [Ci3Jn(ki

rr) + Ci4Nn(ki
rr)]sin(nφ)e−kzz . . . (37)

For instance, we set a continuity equation from (i-1)th to ith dielectric layer Ei−1
phi =

Ei
phi (and idem for Hφ,Ez), each equation including the sum Ee + Em.

[
1

jωǫi−1ri−1
∗−nkzψ

m
i−1sin(nφ)+(kr)i−1∂rψ

e
i−1sin(nφ)]−[

1

jωǫiri

∗−nkzψ
m
i sin(nφ)+(kr)i∂rψ

e
i sin(nφ)] = 0

(38)
We put the following convention : ri−1 + o(r) ∼ ri − o(r) = by definition ri−1, showing

the need to numerate properly the dielectric multi layers. Let name it ri, for short. Also
that identity is correct ∀φ, which may be simplified28.

Developing, gives :

[
1

jωǫi−1ri

∗ −nkz(C(i−1)1Jn((kr)i−1ri) + C(i−1)2Nn((kr)i−1r − i))

+(kr)i−1(C(i−1)3J
′n((kr)i−1ri) + C(i−1)4N

′n((kr)i−1ri)]

−[
1

jωǫiri

∗ −nkz(Ci1Jn((kr)iri) + Ci2Nn((kr)iri))

+(kr)i(Ci3J
′n((kr)iri) + Ci4N

′n((kr)iri)] = 0

(39)

Such relations drives us to a linear homogeneous system covering the unknown coeffi-
cients [C], ie we can express it like [A][C] = 0, where the matrix A is build with continuity
equations similar to the precedent one.

.4 Resolution of the homogeneous system

For a solution to exist, it is necessary that the determinant of A be null. That condition
determines the solution in term of kz, the value(s) of the longitudinal propagation constant

27see part ?? for function names
28the false case/paradox φ = 0 is to be shunted, invoking continuity of the physical solution
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of the searched mode. When kz is determined, we can deduce kr by kr =
√

(k2 − k2
z).

Knowing these 2 constants, the computation of the coefficients of scalar potentials, and
consequently the components of the electromagnetic fields can be done.

In other side, we have to determine the rank of A, say the dimension of the kernel.
The number of equations Ne is 4n-2 :indeed we should have 4n equations of continuity

(4 components by layer, Ez,Ephi,Hz,Hphi), but for the first layer, coinciding with the center
of the guide, there is no equation. then Ne = 4(n − 1) = 4n − 4. However, the last layer
ends by metallization, it is the frontier of the guide. Then we can write 2 more relations,
1 for E, 1 for H, so Ne = 4n− 2

The number of unknowns Nu is 4n-2 :indeed there are 4 coefficients by layer, then 4n,
but for the first layer, when r −→ 0, the function Nn(r) diverge, so it imposes C12 = C24 = 0.
Finally, Nu = Ne = 4n− 2.

But rank(A) is not maximal, then we should have rank(A) < dim(A) where the
inequality is strict ; it is clear that any homogeneous linear system, even with detA = 0,
may have a kernel included into the total initial space. The main point here, is that
[26] explain « in general with n = 4q − 2, the rank of A is n-1 ». To my point it is the
weak aspect of the method. Evidently, it must occur cases when a solution doesn’t exist
(rank(A) = 0, and no value of kz) or several solutions are coexisting (rank(A) < (n− 1)
strictly, and several values of kz), but isn’t it reflecting the physical view ? Indeed, « no
solution » does not imply no existence of any electromagnetic phenomenon, and multiple
solutions expresses probably several scenarii, a mode degeneracy, or coexistence of fairly
distinct types of electromagnetic modes.

Anyhow, it is considered, particularly for 2 dielectric layers, that the case rank(A) =
n− 1 is statistically major, we shall admit it.

If that question is left aside, considering rank(A) = n − 1 drives us to fix the va-
lue of 1 of n coefficients. Traditionally the first one, C11 = 1 for energy normalisation
considerations, which can be shown [26]

Consequently, it may be verified that the original matrix can be « cut » by the following
procedure : take away the first line (rank(A)=n-1), and take away the first column (C11 = 1
implies that no left n-1 equations , need first column), and report the first column of
A22 . . . A2n in the second member.

Explicitly we have to solve :





















A22 . . . A2n

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .
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. . .
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A21

A31

. . .
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. . .
An1





















(40)

Which can be done by LU decomposition and after it, by backward substitution.
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