Advanced Particle Physics

Frédéric Machefert

Cours de l'École Polytechnique Master 2 - PHE

September 2023

Contact: frederic.machefert@cern.ch

∃ ⊳

- 1 The content of the Standard Model
- 2 Relativity
- 8 Kinematics
- 4 Quantum Field Theory
- 6 The Lagrangian
- 6 Spinors

- Time ordered perturbation theory
- Oirac equation and spin
- The Feynman Rules
- Example of processes
- Acceleration and Detection
- Muon pair production
- Anomalous magnetic moment

F. Machefert (Cours Master 2 - X - PHE) Advanced Pa

Fermions

Fermions Matter = fermions

 $(\text{Spin}-\frac{1}{2} \text{ particles}):$

- Electrons with two spin orientations: L and R
- Neutrinos (L)
- Quarks L and R (proton=uud, neutron=udd)
- Three families = heavier copies of the first family

Particle		
$\left(\begin{array}{c} \nu_{e_L} \\ e_L \end{array}\right)$		
u _R d _R e _R		

표 문 표

A (10) > (10)

Ρ

Fermions

Fermions

Matter = fermions (Spin- $\frac{1}{2}$ particles):

- Electrons with two spin orientations: L and R
- Neutrinos (L)
- Quarks L and R (proton=uud, neutron=udd)
- Three families = heavier copies of the first family

article		
$\left(\begin{array}{c}\nu_{e_{L}}\\e_{L}\end{array}\right)$		
u_R d_R e_R		

포 > 포

Fermions

Fermions

Matter = fermions (Spin- $\frac{1}{2}$ particles):

- Electrons with two spin orientations: L and R
- Neutrinos (L)
- Quarks L and R (proton=uud, neutron=udd)
- Three families = heavier copies of the first family

Particle		
$\left(\begin{array}{c} u_L \\ d_L \end{array} \right)$		
$\left(\begin{array}{c} \nu_{e_L} \\ e_L \end{array} \right)$		
u _R d _R e _R		

3 1 3

Fermions

Fermions

Matter = fermions (Spin- $\frac{1}{2}$ particles):

- Electrons with two spin orientations: L and R
- Neutrinos (L)
- Quarks L and R (proton=uud, neutron=udd)
- Three families = heavier copies of the first family

Particle

$\left(\begin{array}{c} u_L \\ d_L \end{array}\right)$	$\left(\begin{array}{c} c_L \\ s_L \end{array}\right)$	$\left(\begin{array}{c} t_L \\ b_L \end{array} \right)$	
$\left(\begin{array}{c}\nu_{e_L}\\e_L\end{array}\right)$	$\left(egin{array}{c} u_{\mu_{ m L}} \\ \mu_{ m L} \end{array} ight)$	$\left(egin{array}{c} u_{ au_{ m L}} \\ au_{ m L} \end{array} ight)$	
u _R d _R e _R	c _R s _R μ _R	$t_{ m R}$ $b_{ m R}$	

э

Bosons

Interactions = bosons (Spin-0 or -1 particles):

- Electromagnetism: Spin–1 massless
- Strong interaction (p=uud): Spin-1 massless
- Weak interaction: Spin-1 massive
- Masses: Spin–0 massive

Particle

$$\begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} \begin{pmatrix} c_{L} \\ s_{L} \end{pmatrix} \begin{pmatrix} t_{L} \\ b_{L} \end{pmatrix}$$

$$\begin{pmatrix} \nu_{e_{L}} \\ e_{L} \end{pmatrix} \begin{pmatrix} \nu_{\mu_{L}} \\ \mu_{L} \end{pmatrix} \begin{pmatrix} \nu_{\tau_{L}} \\ \tau_{L} \end{pmatrix}$$

$$u_{R} \quad c_{R} \quad t_{R} \\ d_{R} \quad s_{R} \quad b_{R} \\ e_{R} \quad \mu_{R} \quad \tau_{R} \end{pmatrix}$$

$$\begin{pmatrix} \gamma \\ W^{\pm}, Z^{\circ} \\ H \end{pmatrix}$$

F. Machefert (Cours Master 2 - X - PHE) Advan

< 17 > <

표 문 표

Bosons

Interactions = bosons (Spin-0 or -1 particles):

- Electromagnetism: Spin–1 massless
- Strong interaction (p=uud): Spin-1 massless
- Weak interaction: Spin-1 massive
- Masses: Spin–0 massive

Particle

$$\begin{pmatrix} u_L \\ d_L \end{pmatrix} \begin{pmatrix} c_L \\ s_L \end{pmatrix} \begin{pmatrix} t_L \\ b_L \end{pmatrix}$$

$$\begin{pmatrix} \nu_{e_L} \\ e_L \end{pmatrix} \begin{pmatrix} \nu_{\mu_L} \\ \mu_L \end{pmatrix} \begin{pmatrix} \nu_{\tau_L} \\ \tau_L \end{pmatrix}$$

$$u_R \quad c_R \quad t_R \\ d_R \quad s_R \quad b_R \\ e_R \quad \mu_R \quad \tau_R \end{pmatrix}$$

$$\begin{pmatrix} \gamma \\ g \\ W^{\pm}, Z^{\circ} \\ H \end{pmatrix}$$

A ►

포 > 포

Bosons

Interactions = bosons (Spin-0 or -1 particles):

- Electromagnetism: Spin–1 massless
- Strong interaction (p=uud): Spin-1 massless
- Weak interaction: Spin–1 massive

 Masses: Spin–0 massive

Particle

$\left(\begin{array}{c} u_L \\ d_L \end{array} \right)$	$\left(\begin{array}{c} c_L\\ s_L \end{array}\right)$	$\left(\begin{array}{c} t_L \\ b_L \end{array} \right)$	
$\left(\begin{array}{c} \nu_{e_L} \\ e_L \end{array}\right)$	$\left(egin{array}{c} u_{\mu_{ m L}} \\ \mu_{ m L} \end{array} ight)$	$\left(\begin{array}{c} \nu_{\tau_{\rm L}} \\ \tau_{\rm L} \end{array} \right)$	
u _R d _R e _R	$c_{ m R}$ $s_{ m R}$ $\mu_{ m R}$	t _R b _R ${ au_{ m R}}$	
$\overset{\gamma}{\substack{m{g}\ }}_{W^{\pm}, Z^{\circ}}$			

3 1 3

Bosons

Interactions = bosons (Spin-0 or -1 particles):

- Electromagnetism: Spin–1 massless
- Strong interaction (p=uud): Spin-1 massless
- Weak interaction: Spin–1 massive
- Masses: Spin–0 massive

Particle

$$\begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} \begin{pmatrix} c_{L} \\ s_{L} \end{pmatrix} \begin{pmatrix} t_{L} \\ b_{L} \end{pmatrix}$$

$$\begin{pmatrix} \nu_{e_{L}} \\ e_{L} \end{pmatrix} \begin{pmatrix} \nu_{\mu_{L}} \\ \mu_{L} \end{pmatrix} \begin{pmatrix} \nu_{\tau_{L}} \\ \tau_{L} \end{pmatrix}$$

$$\begin{matrix} u_{R} & c_{R} & t_{R} \\ d_{R} & s_{R} & b_{R} \\ e_{R} & \mu_{R} & \tau_{R} \end{pmatrix}$$

$$\begin{matrix} \gamma \\ g \\ W^{\pm}, Z^{\circ} \\ H \end{matrix}$$

3) B

Electric charge

- Fractional charges not observed in nature
- Strong interaction: uud, udd

< 3 b

Image: A match a ma

æ

Electric charge

Þ

- Fractional charges not observed in nature
- Strong interaction: uud, udd

< 3 b

크

-

< A > <

Colour charge

Charges

- Sum of colours (RGB) white
- R+G+B= (qqq =baryon)
- Colour+anti-colour= White (qq =meson)
- Gluon carries colour+anti-colour
- 8 different gluons (not 9)

Properties

$$\begin{array}{cccc}
C & \left(\begin{array}{c}
u_{L}\\
d_{L}\end{array}\right) & \left(\begin{array}{c}
c_{L}\\
s_{L}\end{array}\right) & \left(\begin{array}{c}
t_{L}\\
b_{L}\end{array}\right) \\
- & \left(\begin{array}{c}
\nu_{e_{L}}\\
e_{L}\end{array}\right) & \left(\begin{array}{c}
\nu_{\mu_{L}}\\
\mu_{L}\end{array}\right) & \left(\begin{array}{c}
\nu_{\tau_{L}}\\
\tau_{L}\end{array}\right) \\
\end{array}$$

$$\begin{array}{cccc}
C & u_{R} & c_{R} & t_{R} \\
C & d_{R} & s_{R} & b_{R} \\
- & e_{R} & \mu_{R} & \tau_{R} \\
\end{array}$$

$$\begin{array}{cccc}
C + \overline{C}' & g \\
- & W^{\pm}, Z^{\circ} \\
- & H
\end{array}$$

포 > 포

Standard Model Overview

Standard Model Overview

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Ż

Interaction intensities

Rule of thumb for interactions

Interaction	Carrier	Relative strength	
Gravitation Weak Electromagnetic Strong	Graviton (G) Weak Bosons (W^{\pm},Z°) Photon (γ) Gluon (g)	10 ⁻⁴⁰ 10 ⁻⁷ 10 ⁻² 1	

- Forget about Gravitation in particle physics problems
- The course will lead us to understand how the model describes the interactions and their strength.

Metric

A four-vector **x** is attributed to a particular space-time point.

$$\mathbf{x} = (x^{\mu}) = \begin{pmatrix} x^{0} \\ x^{1} \\ x^{2} \\ x^{3} \end{pmatrix} = \begin{pmatrix} t \\ \vec{x} \end{pmatrix}$$

Greek letters are for four-vectors Roman letters for spatial coordinates (vectors) The scalar product is defined thanks to the metric tensor $g^{\mu\nu}$

$$\mathbf{g}=(g_{\mu
u})=\left(egin{array}{cccc} 1&0&0&0\ 0&-1&0&0\ 0&0&-1&0\ 0&0&0&-1\end{array}
ight)$$

by

$$\mathbf{x}.\mathbf{y} = g_{\mu\nu}x^{\mu}y^{\nu} = x^{\mu}y_{\mu} = x_{\mu}y^{\mu}$$

Lorentz transformation

• A transformation (A, a) defines the transition from an inertia frame to another

$$(\Lambda, a): x^{\mu}
ightarrow x'^{\mu} = \Lambda^{\mu}_{
u} x^{
u} + a^{\mu}$$

- The energy and 3-momentum p of a particle of mass m form a four-vector whose square $\mathbf{p}.\mathbf{p} = m^2$
- In the course, we will apply the Einstein summation rule on greek indices
- The velocity of the particle is $\beta = v/c = p/E$
- and the Lorentz factor is $\gamma = -\frac{1}{\sqrt{1-1}}$
- The energy and momentum (\vec{E}^*, \vec{p}^*) viewed from a frame moving with velocity β_f are given by

$$\begin{pmatrix} E^{\star} \\ p_{||}^{\star} \end{pmatrix} = \begin{pmatrix} \gamma_f & -\gamma_f \beta_f \\ -\gamma_f \beta_f & \gamma_f \end{pmatrix} \begin{pmatrix} E \\ p_{||} \end{pmatrix}$$

Lorentz transformation

• A transformation (A, a) defines the transition from an inertia frame to another

$$(\Lambda, a): x^{\mu} \rightarrow x'^{\mu} = \Lambda^{\mu}_{\nu} x^{\nu} + a^{\mu}$$

- The energy and 3-momentum p of a particle of mass m form a four-vector whose square $\mathbf{p}.\mathbf{p} = m^2$
- In the course, we will apply the Einstein summation rule on greek indices
- The velocity of the particle is $\beta = v/c = p/E$
- and the Lorentz factor is $\gamma = \frac{1}{\sqrt{4}}$
- The energy and momentum $(\vec{E^*}, \vec{p^*})$ viewed from a frame moving with velocity β_f are given by

$$\begin{pmatrix} E^{\star} \\ p_{||}^{\star} \end{pmatrix} = \begin{pmatrix} \gamma_f & -\gamma_f \beta_f \\ -\gamma_f \beta_f & \gamma_f \end{pmatrix} \begin{pmatrix} E \\ p_{||} \end{pmatrix}$$

Lorentz transformation

• A transformation (Λ, a) defines the transition from an inertia frame to another

$$(\Lambda, a): x^{\mu} \rightarrow x'^{\mu} = \Lambda^{\mu}_{\nu} x^{\nu} + a^{\mu}$$

- The energy and 3-momentum p of a particle of mass m form a four-vector whose square $\mathbf{p}.\mathbf{p} = m^2$
- In the course, we will apply the Einstein summation rule on greek indices
- The velocity of the particle is $\beta = v/c = p/E$
- and the Lorentz factor is $\gamma = \frac{1}{\sqrt{1-\beta^2}}$
- The energy and momentum (E^*, p^*) viewed from a frame moving with velocity β_f are given by

$$\begin{pmatrix} E^{\star} \\ p_{||}^{\star} \end{pmatrix} = \begin{pmatrix} \gamma_{f} & -\gamma_{f}\beta_{f} \\ -\gamma_{f}\beta_{f} & \gamma_{f} \end{pmatrix} \begin{pmatrix} E \\ p_{||} \end{pmatrix}$$

Lorentz transformation

• A transformation (Λ, a) defines the transition from an inertia frame to another

$$(\Lambda, a): x^{\mu} \rightarrow x'^{\mu} = \Lambda^{\mu}_{\nu} x^{\nu} + a^{\mu}$$

- The energy and 3-momentum p of a particle of mass m form a four-vector whose square $\mathbf{p}.\mathbf{p} = m^2$
- In the course, we will apply the Einstein summation rule on greek indices
- The velocity of the particle is $\beta = v/c = p/E$
- and the Lorentz factor is $\gamma = \frac{1}{\sqrt{1-\beta^2}}$
- The energy and momentum (\vec{E}^*, \vec{p}^*) viewed from a frame moving with velocity β_f are given by

$$\left(\begin{array}{c} \boldsymbol{E}^{\star} \\ \boldsymbol{p}_{||}^{\star} \end{array}\right) = \left(\begin{array}{c} \gamma_{f} & -\gamma_{f}\beta_{f} \\ -\gamma_{f}\beta_{f} & \gamma_{f} \end{array}\right) \left(\begin{array}{c} \boldsymbol{E} \\ \boldsymbol{p}_{||} \end{array}\right)$$

Special relativity - Space-time coordinates

with

$$eta = m{v}/m{c} \;\; {\rm and} \;\; \gamma = rac{1}{\sqrt{1-eta^2}}$$

 $\begin{pmatrix} t' \\ x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \gamma & -\gamma\beta & 0 & 0 \\ -\gamma\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} t \\ x \\ y \\ z \end{pmatrix}$

F. Machefert (Cours Master 2 - X - PHE) Advanced Particle Physics - Ecole Polytechnique S

→ ∃ →

Muon decay in the atmosphere

Muon decay

Elementary particles called muons (which are identical to electrons, except that they are about 200 times as massive) are created in the upper atmosphere when cosmic rays collide with air molecules. The muons have an average lifetime of about 2×10^{-6} seconds (then they decay into electrons and neutrinos), and move at nearly the speed of light.

Assume for simplicity that a certain muon is created at a height of 50 km, moves straight downward, has a speed v = 0.99998c, decays in exactly $T = 2 \times 10^{-6}$ seconds, and doesn't collide with anything on the way down. Will the muon reach the earth before it (the muon) decays ?

Muon decay in the atmosphere

Muon decay

Elementary particles called muons (which are identical to electrons, except that they are about 200 times as massive) are created in the upper atmosphere when cosmic rays collide with air molecules. The muons have an average lifetime of about 2×10^{-6} seconds (then they decay into electrons and neutrinos), and move at nearly the speed of light.

Assume for simplicity that a certain muon is created at a height of 50 km, moves straight downward, has a speed v = 0.99998c, decays in exactly $T = 2 \times 10^{-6}$ seconds, and doesn't collide with anything on the way down. Will the muon reach the earth before it (the muon) decays ?

Solution

The naive thing to say is that the distance traveled by the muon is $d = vT \sim (3 \times 10^8 m/s)(2 \times 10^{-6} s) = 600m$, and that this is less than 50 km, so the muon doesn't reach the earth.

This reasoning is incorrect, because of the time-dilation effect. The muon lives longer in the earth frame, by a factor γ , which is $\gamma = 1/\sqrt{(1 - v^2/c^2)} \sim 160$ here. The correct distance traveled in the earth frame is therefore $v\gamma T \sim 100$ km. Hence, the muon travels the 50 km, with room to spare.

The real-life fact that we actually do detect muons reaching the surface of the earth in the predicted abundances (while the naived vT reasoning would predict that we shouldn't see any) is one of the many experimental tests that support relativity.

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Muon decay again

Consider the "Muon decay" example. From the muon's point of view, it lives for a time of $T = 2 \times 10^{-6}$ seconds, and the earth is speeding toward it at v = 0.99998c. How, then, does the earth (which travels only $d = vT \sim 600$ m before the muon decays) reach the muon?

Muon decay again

Consider the "Muon decay" example. From the muon's point of view, it lives for a time of $T = 2 \times 10^{-6}$ seconds, and the earth is speeding toward it at v = 0.99998c. How, then, does the earth (which travels only $d = vT \sim 600$ m before the muon decays) reach the muon?

Solution

The important point here is that in the muon's frame, the distance to the earth is contracted by a factor $\gamma \sim 160$. Therefore, the earth starts only $50 km/160 \sim 300m$ away. Since the earth can travel a distance of 600 m during the muon's lifetime, the earth collides with the muon, with time to spare.

Time dilation and length contraction are intimately related. We can't have one without the other.

$$g^{\mu\mu} = (1, -1, -1, -1)$$

for $\mu \neq \nu : g^{\mu\nu} = 0$

Conservation of E and \vec{p}

 $\mathbf{a} + \mathbf{b} = \mathbf{c} + \mathbf{d}$

therefore

 $\mathbf{a} - \mathbf{c} = \mathbf{d} - \mathbf{b}$

э

$$g^{\mu\mu} = (1, -1, -1, -1)$$

for $\mu \neq \nu : g^{\mu\nu} = 0$

Conservat	ion of E and \vec{p}	Mandelstam Variables
	$\mathbf{a} + \mathbf{b} = \mathbf{c} + \mathbf{d}$	a+b ightarrow c+d
therefore	$s = (\mathbf{a} + \mathbf{b})^2$	
	$\mathbf{a} - \mathbf{c} = \mathbf{d} - \mathbf{b}$	$t = (\mathbf{a} - \mathbf{c})^2$
_		$u = (\mathbf{a} - \mathbf{d})^2$

Theorem

$$s + t + u = m_a^2 + m_b^2 + m_c^2 + m_d^2$$

э

Theorem

$$s + t + u = m_a^2 + m_b^2 + m_c^2 + m_d^2$$

Proof.

æ

Ż

Theorem

$$s + t + u = m_a^2 + m_b^2 + m_c^2 + m_d^2$$

3

15/89

通 ト イ ヨ ト イ ヨ ト

Theorem

$$s + t + u = m_a^2 + m_b^2 + m_c^2 + m_d^2$$

3

通 ト イ ヨ ト イ ヨ ト

È

通 ト イ ヨ ト イ ヨ ト

3

15/89

The Mandelstam variables

Theorem

$$s + t + u = m_a^2 + m_b^2 + m_c^2 + m_d^2$$

Proof. $s + t + u = a^{2} + b^{2} + 2 \cdot a \cdot b + a^{2} + c^{2} - 2 \cdot a \cdot c + a^{2} + d^{2} - 2 \cdot a \cdot d$ $= 3m_{a}^{2} + m_{b}^{2} + m_{c}^{2} + m_{d}^{2} + 2 \cdot a (b - c - d)$ $= 3m_{a}^{2} + m_{b}^{2} + m_{c}^{2} + m_{d}^{2} - 2 \cdot a (a)$ a + b = c + d

Theorem

$$s + t + u = m_a^2 + m_b^2 + m_c^2 + m_d^2$$

3

通 ト イ ヨ ト イ ヨ ト

È

Theorem

$$s + t + u = m_a^2 + m_b^2 + m_c^2 + m_d^2$$

3

15/89

通 ト イ ヨ ト イ ヨ ト

Ì

Theorem

$$s + t + u = m_a^2 + m_b^2 + m_c^2 + m_d^2$$

2 particle reaction \rightarrow 2 independent variables!

3

通 ト イ ヨ ト イ ヨ ト

C.
Useful relationships

$$t = -2(E_a \cdot E_c - \vec{p}_a \cdot \vec{p}_c)$$

F. Machefert (Cours Master 2 - X - PHE) Advanced Particle Physics - Ecole Polytechnique

æ

Useful relationships

$$E = -2(E_a \cdot E_c - \vec{p}_a \cdot \vec{p}_c)$$

$$= -2(\frac{\sqrt{s}}{2}\cdot\frac{\sqrt{s}}{2}-\frac{\sqrt{s}}{2}\cdot\frac{\sqrt{s}}{2}\cdot\cos\theta)$$

massless

문 🛌 문

Useful relationships

$$f = -2(E_a \cdot E_c - \vec{p}_a \cdot \vec{p}_c)$$
$$= -2(\frac{\sqrt{s}}{2} \cdot \frac{\sqrt{s}}{2} - \frac{\sqrt{s}}{2} \cdot \frac{\sqrt{s}}{2} \cdot \cos\theta)$$
$$= -\frac{s}{2} \cdot (1 - \cos\theta)$$

massless

문 🛌 문

Useful relationships

$$t = -2(E_a \cdot E_c - \vec{p}_a \cdot \vec{p}_c)$$

$$= -2(\frac{\sqrt{s}}{2} \cdot \frac{\sqrt{s}}{2} - \frac{\sqrt{s}}{2} \cdot \frac{\sqrt{s}}{2} \cdot \cos\theta)$$

$$= -\frac{s}{2} \cdot (1 - \cos\theta)$$

$$u = -\frac{s}{2} \cdot (1 + \cos\theta)$$

massless

Useful relationships

$$t = -2(E_a \cdot E_c - \vec{p}_a \cdot \vec{p}_c)$$

= $-2(\frac{\sqrt{s}}{2} \cdot \frac{\sqrt{s}}{2} - \frac{\sqrt{s}}{2} \cdot \frac{\sqrt{s}}{2} \cdot \cos\theta)$
= $-\frac{s}{2} \cdot (1 - \cos\theta)$
 $u = -\frac{s}{2} \cdot (1 + \cos\theta)$
 $t = -2(\frac{\sqrt{s}}{2} \cdot \frac{\sqrt{s}}{2} - \frac{\sqrt{s}}{2} \cdot \sqrt{E_c^2 - m_c^2} \cdot \cos\theta)$

massless initial state and massive final state of identical particles

Þ

Useful relationships

$$t = -2(E_a \cdot E_c - \vec{p}_a \cdot \vec{p}_c)$$

$$= -2(\frac{\sqrt{s}}{2} \cdot \frac{\sqrt{s}}{2} - \frac{\sqrt{s}}{2} \cdot \frac{\sqrt{s}}{2} \cdot \cos\theta)$$

$$= -\frac{s}{2} \cdot (1 - \cos\theta)$$

$$u = -\frac{s}{2} \cdot (1 + \cos\theta)$$

$$t = -2(\frac{\sqrt{s}}{2} \cdot \frac{\sqrt{s}}{2} - \frac{\sqrt{s}}{2} \cdot \sqrt{E_c^2 - m_c^2} \cdot \cos\theta)$$

$$= -2(\frac{\sqrt{s}}{2} \cdot \frac{\sqrt{s}}{2} - \frac{\sqrt{s}}{2} \cdot \sqrt{s/4 - m_c^2} \cdot \cos\theta)$$

massless initial state and massive final state of identical particles

È

Useful relationships

$$t = -2(E_a \cdot E_c - \vec{p}_a \cdot \vec{p}_c)$$

$$= -2(\frac{\sqrt{s}}{2} \cdot \frac{\sqrt{s}}{2} - \frac{\sqrt{s}}{2} \cdot \frac{\sqrt{s}}{2} \cdot \cos \theta)$$

$$= -\frac{s}{2} \cdot (1 - \cos \theta)$$

$$u = -\frac{s}{2} \cdot (1 + \cos \theta)$$

$$t = -2(\frac{\sqrt{s}}{2} \cdot \frac{\sqrt{s}}{2} - \frac{\sqrt{s}}{2} \cdot \sqrt{E_c^2 - m_c^2} \cdot \cos \theta)$$

$$= -2(\frac{\sqrt{s}}{2} \cdot \frac{\sqrt{s}}{2} - \frac{\sqrt{s}}{2} \cdot \sqrt{s/4 - m_c^2} \cdot \cos \theta)$$

$$= -2(\frac{\sqrt{s}}{2} \cdot \frac{\sqrt{s}}{2} - \frac{\sqrt{s}}{2} \cdot \frac{\sqrt{s}}{2} \cdot \sqrt{1 - 4m_c^2/s} \cdot \cos \theta)$$

massless initial state and massive final state of identical particles

Ð.

È

Useful relationships

$$t = -2(E_a \cdot E_c - \vec{p}_a \cdot \vec{p}_c)$$

$$= -2(\frac{\sqrt{s}}{2} \cdot \frac{\sqrt{s}}{2} - \frac{\sqrt{s}}{2} \cdot \frac{\sqrt{s}}{2} \cdot \cos \theta)$$

$$= -\frac{s}{2} \cdot (1 - \cos \theta)$$

$$u = -\frac{s}{2} \cdot (1 + \cos \theta)$$

$$t = -2(\frac{\sqrt{s}}{2} \cdot \frac{\sqrt{s}}{2} - \frac{\sqrt{s}}{2} \cdot \sqrt{E_c^2 - m_c^2} \cdot \cos \theta)$$

$$= -2(\frac{\sqrt{s}}{2} \cdot \frac{\sqrt{s}}{2} - \frac{\sqrt{s}}{2} \cdot \sqrt{s/4 - m_c^2} \cdot \cos \theta)$$

$$= -2(\frac{\sqrt{s}}{2} \cdot \frac{\sqrt{s}}{2} - \frac{\sqrt{s}}{2} \cdot \frac{\sqrt{s}}{2} \cdot \sqrt{1 - 4m_c^2/s} \cdot \cos \theta)$$

$$= -\frac{s}{2} \cdot (1 - \beta \cdot \cos \theta)$$

massless initial state and massive final state of identical particles

È

$$\mathbf{a} + \mathbf{b} \rightarrow \mathbf{c} + \mathbf{d}$$

 $\mathbf{s} = (\mathbf{a} + \mathbf{b})^2$
 $t = (\mathbf{a} - \mathbf{c})^2$
 $u = (\mathbf{a} - \mathbf{d})^2$

$$\begin{aligned} \mathbf{a} + \mathbf{b} &\rightarrow \mathbf{c} + \mathbf{d} \\ \mathbf{s} &= (\mathbf{a} + \mathbf{b})^2 \\ t &= (\mathbf{a} - \mathbf{c})^2 \\ u &= (\mathbf{a} - \mathbf{d})^2 \end{aligned} \qquad \begin{aligned} \mathbf{a} + \overline{\mathbf{c}} &\rightarrow \overline{\mathbf{b}} + \mathbf{d} \\ \mathbf{s}' &= (\mathbf{a} + \overline{\mathbf{c}})^2 \\ t' &= (\mathbf{a} - \overline{\mathbf{b}})^2 \\ u' &= (\mathbf{a} - \mathbf{d})^2 \end{aligned}$$

$$\begin{array}{l} \mathbf{a} + \mathbf{b} \rightarrow \mathbf{c} + \mathbf{d} \\ \mathbf{s} = (\mathbf{a} + \mathbf{b})^2 \\ t = (\mathbf{a} - \mathbf{c})^2 \\ u = (\mathbf{a} - \mathbf{d})^2 \end{array} \begin{vmatrix} \mathbf{a} + \overline{\mathbf{c}} \rightarrow \overline{\mathbf{b}} + \mathbf{d} \\ \mathbf{s}' = (\mathbf{a} + \overline{\mathbf{c}})^2 \\ t' = (\mathbf{a} - \overline{\mathbf{b}})^2 \\ u' = (\mathbf{a} - \mathbf{d})^2 \end{vmatrix} = (\mathbf{a} - \mathbf{c})^2$$

$$\begin{array}{c|c} \mathbf{a} + \mathbf{b} \rightarrow \mathbf{c} + \mathbf{d} & \mathbf{a} + \overline{\mathbf{c}} \rightarrow \overline{\mathbf{b}} + \mathbf{d} \\ \hline s = (\mathbf{a} + \mathbf{b})^2 & s' = (\mathbf{a} + \overline{\mathbf{c}})^2 & = (\mathbf{a} - \mathbf{c})^2 & = t \\ t = (\mathbf{a} - \mathbf{c})^2 & t' = (\mathbf{a} - \overline{\mathbf{b}})^2 & = (\mathbf{a} + \mathbf{b})^2 & = s \\ u = (\mathbf{a} - \mathbf{d})^2 & u' = (\mathbf{a} - \mathbf{d})^2 & = u \end{array}$$

$$\begin{array}{l|l} \mathbf{a} + \mathbf{b} \rightarrow \mathbf{c} + \mathbf{d} \\ \mathbf{s} = (\mathbf{a} + \mathbf{b})^2 \\ t = (\mathbf{a} - \mathbf{c})^2 \\ u = (\mathbf{a} - \mathbf{d})^2 \end{array} \begin{vmatrix} \mathbf{a} + \overline{\mathbf{c}} \rightarrow \overline{\mathbf{b}} + \mathbf{d} \\ \mathbf{s}' = (\mathbf{a} + \overline{\mathbf{c}})^2 \\ t' = (\mathbf{a} - \overline{\mathbf{b}})^2 \\ \mathbf{c} = (\mathbf{a} - \mathbf{c})^2 \\ \mathbf{c} = (\mathbf{a} - \mathbf{b})^2 \\ u' = (\mathbf{a} - \mathbf{d})^2 \\ u' =$$

• Calculate a process as function of *s*,*t*,*u*

17/89

$$\begin{array}{c|c} \mathbf{a} + \mathbf{b} \rightarrow \mathbf{c} + \mathbf{d} \\ \mathbf{s} = (\mathbf{a} + \mathbf{b})^2 \\ t = (\mathbf{a} - \mathbf{c})^2 \\ u = (\mathbf{a} - \mathbf{d})^2 \end{array} \begin{vmatrix} \mathbf{a} + \overline{\mathbf{c}} \rightarrow \overline{\mathbf{b}} + \mathbf{d} \\ \mathbf{s}' = (\mathbf{a} + \overline{\mathbf{c}})^2 \\ t' = (\mathbf{a} - \overline{\mathbf{b}})^2 \\ \mathbf{c} = (\mathbf{a} - \mathbf{c})^2 \\ u' = (\mathbf{a} - \mathbf{d})^2 \\ u' = ($$

- Calculate a process as function of *s*,*t*,*u*
- Derive crossed process by s → t, t → s, u → u

$$\begin{array}{c|c} \mathbf{a} + \mathbf{b} \rightarrow \mathbf{c} + \mathbf{d} \\ \mathbf{s} = (\mathbf{a} + \mathbf{b})^2 \\ t = (\mathbf{a} - \mathbf{c})^2 \\ u = (\mathbf{a} - \mathbf{d})^2 \end{array} \begin{vmatrix} \mathbf{a} + \overline{\mathbf{c}} \rightarrow \overline{\mathbf{b}} + \mathbf{d} \\ \mathbf{s}' = (\mathbf{a} + \overline{\mathbf{c}})^2 \\ t' = (\mathbf{a} - \overline{\mathbf{b}})^2 \\ \mathbf{c} = (\mathbf{a} - \mathbf{c})^2 \\ u' = (\mathbf{a} - \mathbf{d})^2 \\ u' = ($$

- Calculate a process as function of *s*,*t*,*u*
- Derive crossed process by s → t, t → s, u → u
- We can express one process in the kinematic variables of another process (Xcheck)

$$\begin{array}{l|l} \mathbf{a} + \mathbf{b} \rightarrow \mathbf{c} + \mathbf{d} & \mathbf{a} + \overline{\mathbf{c}} \rightarrow \overline{\mathbf{b}} + \mathbf{d} \\ \hline \mathbf{s} = (\mathbf{a} + \mathbf{b})^2 & \mathbf{s}' = (\mathbf{a} + \overline{\mathbf{c}})^2 & = (\mathbf{a} - \mathbf{c})^2 & = t \\ \hline t = (\mathbf{a} - \mathbf{c})^2 & t' = (\mathbf{a} - \overline{\mathbf{b}})^2 & = (\mathbf{a} + \mathbf{b})^2 & = s \\ u = (\mathbf{a} - \mathbf{d})^2 & u' = (\mathbf{a} - \mathbf{d})^2 & = u \end{array}$$

- Calculate a process as function of *s*,*t*,*u*
- Derive crossed process by s → t, t → s, u → u
- We can express one process in the kinematic variables of another process (Xcheck)
- Global factor -1 for each fermion line crossed

< 3 b

< 🗇 > < 🖻 >

æ

18/89

< 🗇 > < 🖻 >

t-channel: scattering

A ₽

The photon is massive (virtual) time-like

伺 ト イ ヨ ト イ ヨ ト

The photon is massive (virtual) time-like

The photon is massive (virtual) time-like

< ⊒ >

The photon is massive (virtual) time-like

э

The photon is massive (virtual) time-like

t-channel: scattering

伺 ト イ ヨ ト イ ヨ ト

э

Cross Section

- The cross section σ is the ratio of the transition rate and the flux of incoming particles.
- Its unit is cm²
- $1b = 10^{-24} \text{cm}^2$ (puts barn in perspective, doesn't it?)

Two ingredients:

• the interaction transforming initial state $|i\rangle$ to a final state $\langle f|$ of *m* particles with four-vectors $\mathbf{p}'_{\mathbf{i}}$

 $d\sigma =$

 $\left|\mathcal{M}\right|^2$

R.

Cross Section

- The cross section σ is the ratio of the transition rate and the flux of incoming particles.
- Its unit is cm²
- $1b = 10^{-24} \text{cm}^2$ (puts barn in perspective, doesn't it?)

Two ingredients:

- the interaction transforming initial state $|i\rangle$ to a final state $\langle f|$ of *m* particles with four-vectors $\mathbf{p}'_{\mathbf{i}}$
- kinematics (including Lorentz-Invariant phase space element)

$$\mathrm{d}\sigma = \frac{1}{2S_{12}} \prod_{i=1}^{m} \frac{\mathrm{d}^{3} p_{i}'}{(2\pi)^{3} 2E_{i}^{i0}} (2\pi)^{4} \delta(\mathbf{p_{1}'} + ... + \mathbf{p_{m}'} - \mathbf{p_{1}} - \mathbf{p_{2}}) |\mathcal{M}|^{2}$$

with (originating from flux) $S_{12} = \sqrt{(s - (m_1 + m_2)^2)(s - (m_1 - m_2)^2)}$

Total Width or Decay Rate

- · Total width is the inverse of the lifetime of the particle
- unit: energy, e.g., GeV.
- Closely related, but not identical to the cross section

$$\mathrm{d}\Gamma = \frac{1}{2E} \prod_{i=1}^{m} \frac{\mathrm{d}^{3} p_{i}'}{(2\pi)^{3} 2E_{i}'^{0}} (2\pi)^{4} \delta(\mathbf{p_{1}'} + ... + \mathbf{p_{m}'} - \mathbf{p_{1}}) |\mathcal{M}|^{2}$$

For the decay of an unpolarized particle of mass *M* into two particles (in the CM frame $\vec{p}'_1 = -\vec{p}'_2$):

$$\mathrm{d}\Gamma = \frac{1}{32\pi^2} \frac{|\vec{p}_1'|}{M^2} |\mathcal{M}|^2 \mathrm{d}\Omega$$

where Ω is the solid angle with $\mathrm{d}\Omega=\mathrm{d}\phi\mathrm{d}\cos\theta$

Cross section and total width

Cross section and total width

Þ

Cross section and total width for a final state with 2 particles

Cross section 2 \rightarrow 2 reaction with four massless particles:

$$\mathrm{d}\sigma = rac{1}{64\pi^2}rac{|\mathcal{M}|^2}{s}\mathrm{d}\Omega$$

Width of a massive particle ($\sqrt{s} = M$) decaying to two massless particles in the final state $|\vec{p}'_1| = \sqrt{s}/2$:

$$\mathrm{d}\Gamma=rac{1}{64\pi^2}rac{|\mathcal{M}|^2}{\sqrt{s}}\mathrm{d}\Omega$$

Study of the phase space in Problem Solving with applications to 2-body.

• Particles: plane waves $\psi(\vec{x}, t) \sim \exp{-im_0 t}$

• Particles: plane waves $\psi(\vec{x},t) \sim \exp{-im_0 t}$, $m_0 \rightarrow m_0 - i\Gamma/2$

• Particles: plane waves $\psi(\vec{x}, t) \sim \exp{-im_0 t}, m_0 \rightarrow m_0 - i\Gamma/2$ $N(t) = N_0 \cdot \exp{-t/\tau}, \Gamma = 1/\tau$

A ₽

- Particles: plane waves $\psi(\vec{x}, t) \sim \exp{-im_0 t}, m_0 \rightarrow m_0 - i\Gamma/2$ $N(t) = N_0 \cdot \exp{-t/\tau}, \Gamma = 1/\tau$
- Fourrier transform to momentum space: $A \sim \frac{1}{(m-m_0)+i\Gamma/2}$

- Particles: plane waves $\psi(\vec{x}, t) \sim \exp{-im_0 t}$, $m_0 \rightarrow m_0 - i\Gamma/2$ $N(t) = N_0 \cdot \exp{-t/\tau}$, $\Gamma = 1/\tau$
- Fourrier transform to momentum space: $A \sim \frac{1}{(m-m_0)+i\Gamma/2}$

$$|A|^2 \sim \frac{1}{(m-m_0)^2 + \Gamma^2/4}$$

Γ: full width half maximum - Similarity to classical mechanics (resonance)

- Particles: plane waves $\psi(\vec{x}, t) \sim \exp{-im_0 t}, m_0 \rightarrow m_0 - i\Gamma/2$ $N(t) = N_0 \cdot \exp{-t/\tau}, \Gamma = 1/\tau$
- Fourrier transform to momentum space: $A \sim \frac{1}{(m-m_0)+i\Gamma/2}$

$$|A|^2 \sim \frac{1}{(m-m_0)^2 + \Gamma^2/4}$$

Γ: full width half maximum - Similarity to classical mechanics (resonance)

- Particles: plane waves $\psi(\vec{x}, t) \sim \exp{-im_0 t}, m_0 \rightarrow m_0 - i\Gamma/2$ $N(t) = N_0 \cdot \exp{-t/\tau}, \Gamma = 1/\tau$
- Fourrier transform to momentum space: $A \sim \frac{1}{(m-m_0)+i\Gamma/2}$

$$|A|^2 \sim \frac{1}{(m-m_0)^2 + \Gamma^2/4}$$

Γ: full width half maximum - Similarity to classical mechanics (resonance)

< 17 ▶

22/89
Description of an unstable particle

- Particles: plane waves $\psi(\vec{x},t) \sim \exp -im_0 t$, $m_0 \rightarrow m_0 - i\Gamma/2$ $N(t) = N_0 \cdot \exp{-t/\tau}, \ \Gamma = 1/\tau$
- Fourrier transform to momentum space: $A \sim \frac{1}{(m-m_0)+i\Gamma/2}$

$$|A|^2 \sim \frac{1}{(m-m_0)^2 + \Gamma^2/4}$$

Γ: full width half maximum - Similarity to classical mechanics (resonance)

ALEPH DELPHI

Example $e^-e^+ \rightarrow Z^{\circ} \rightarrow q\bar{q}$

σ_{had} [nb]

40

lifetime too short to be measured directly: measure mass via decay products qq - cross section measurement

88

90

92

86

< p

22/89

Description of an unstable particle

Suppose that we have two (and exactly two) possible decays for the particle a:

 $egin{array}{ccc} a &
ightarrow & b+c \ a &
ightarrow & d+e \end{array}$

then:

$$\Gamma = \Gamma_{bc} + \Gamma_{de}$$

If a particle of a given mass can decay to more final states than another one with the same mass, it will have a shorter lifetime

Branching ratio

 $\mathcal{B}(a \rightarrow b + c) = \Gamma_{bc}/\Gamma$ The branching ratio: Of *N* decays of particle *a*, a fraction \mathcal{B} will be the final state with the particles *b* and *c*. Γ_{bc} is a partial width of particle *a*.

Remember: for the calculation Γ ALL final states (partial widths) have to be considered.

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Quantum Field Theory	Introduction
Introduction	
Why do we need quantum field theory ? $E = mc^2$ and QFT	
	Ř

from $E = mc^2$ to quantum field theory

The Einstein equation makes a relation between energy and mass

$$E = mc^2$$

Quantum Field Theory	Introduction
Introduction	
Why do we need quantum field theory ? $E = mc^2$ and QFT	
	*

from $E = mc^2$ to quantum field theory

The Einstein equation makes a relation between energy and mass

$$E = mc^2$$

This means that if there is enough energy, we can create a particle with a given mass m.

Introduction

Why do we need quantum field theory ? $E = mc^2$ and QFT

from $E = mc^2$ to quantum field theory

The Einstein equation makes a relation between energy and mass

$$E = mc^2$$

This means that if there is enough energy, we can create a particle with a given mass m. However, due to conservation laws, it will most probably be necessary to produce twice the particle's mass (particle and antiparticle).

24/89

Introduction

Why do we need quantum field theory ? $E = mc^2$ and QFT

from $E = mc^2$ to quantum field theory

The Einstein equation makes a relation between energy and mass

$$E = mc^2$$

This means that if there is enough energy, we can create a particle with a given mass m. However, due to conservation laws, it will most probably be necessary to produce twice the particle's mass (particle and antiparticle).

Hence

- Particle number is not fixed
- The types of particles present is not fixed

This is in direct conflict with nonrelativistic quantum mechanics and for example the Schrödinger equation that treats a constant number of particles of a certain type.

Special relativity and quantum field theory

Special relativity and quantum field theory

Attempts to incorporate special relativity in Quantum mechanics

Quantum mechanics and special relativity

Schrödinger equation contained first order time derivative and second order space derivatives

$$-\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2} + V\psi = i\hbar\frac{\partial\psi}{\partial t}$$

÷

Quantum Field Theory Special relativity and quantum field theory

Special relativity and quantum field theory

Attempts to incorporate special relativity in Quantum mechanics

Quantum mechanics and special relativity

Schrödinger equation contained first order time derivative and second order space derivatives

$$-\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2} + V\psi = i\hbar\frac{\partial\psi}{\partial t}$$

Not compatible with special relativity ($E^2 = p^2 + m^2$).

First attempt consisted to promote the time derivative to the second order. This resulted in the Klein Gordon equation :

$$\frac{1}{c^2}\frac{\partial^2\psi}{\partial t^2} - \frac{\partial^2\psi}{\partial x^2} = \frac{m^2c^2}{\hbar^2}\psi$$

25/89

Quantum Field Theory Special relativity and quantum field theory

Special relativity and quantum field theory

Attempts to incorporate special relativity in Quantum mechanics

Quantum mechanics and special relativity

Schrödinger equation contained first order time derivative and second order space derivatives

$$-\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2} + V\psi = i\hbar\frac{\partial\psi}{\partial t}$$

Not compatible with special relativity ($E^2 = p^2 + m^2$).

First attempt consisted to promote the time derivative to the second order. This resulted in the Klein Gordon equation :

$$\frac{1}{c^2}\frac{\partial^2\psi}{\partial t^2} - \frac{\partial^2\psi}{\partial x^2} = \frac{m^2c^2}{\hbar^2}\psi$$

But this leads to funny features:

- Negative presence probabilities,
- negative energy solutions

Quantum Field Theory Special relativity and quantum field theory

Special relativity and quantum field theory

Attempts to incorporate special relativity in Quantum mechanics

Quantum mechanics and special relativity

Schrödinger equation contained first order time derivative and second order space derivatives

$$-\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2} + V\psi = i\hbar\frac{\partial\psi}{\partial t}$$

Not compatible with special relativity ($E^2 = p^2 + m^2$).

First attempt consisted to promote the time derivative to the second order. This resulted in the Klein Gordon equation :

$$\frac{1}{c^2}\frac{\partial^2\psi}{\partial t^2} - \frac{\partial^2\psi}{\partial x^2} = \frac{m^2c^2}{\hbar^2}\psi$$

But this leads to funny features:

- Negative presence probabilities,
- negative energy solutions

Dirac solved the problems by reducing the spatial derivative power.

Resulted in the Dirac equation.

Diagram orders: LO

- Leading Order (LO) diagram is the simplest diagram
- The electron is on-shell (**p**² = m²_e), no interactions

Evaluate a process

Diagram orders... NLO

- NLO (next-to-leading order) diagram
- Process not allowed in classical mechanics
- Heisenberg: $\Delta E \Delta t \ge 1 \rightarrow$ process allowed for reabsorption after $\Delta t \sim 1/\Delta E$

÷

Evaluate a process

Diagram orders... NLO

- Quantum mechanics: add all diagrams, but that would also include $N_{\gamma} = \infty$
- Each vertex is an interaction and each interaction has a strength $(|\mathcal{M}|^2 \sim \alpha = 1/137)$
- Perturbation theory with Sommerfeld convergence

27/89

÷

Feynman calculation

Rough recipe

Process calculation

- Construct the Lagrangian of Free Fields
- Introduce interactions via the minimal substitution scheme
- Derive Feynman rules
- Construct (ALL) Feynman diagrams of the process
- Apply Feynman rules

Some aspects are not part of these lectures, but will sketch the ideas

• Remember the particle zoo

$\left(\begin{array}{c} u_L \\ d_L \end{array} \right)$	$\left(\begin{array}{c} c_L \\ s_L \end{array}\right)$	$\left(\begin{array}{c} t_L \\ b_L \end{array} \right)$
$\left(\begin{array}{c} \nu_{e_L} \\ e_L \end{array}\right)$	$\left(egin{array}{c} u_{\mu_{ m L}} \\ \mu_{ m L} \end{array} ight)$	$\left(\begin{array}{c} \nu_{\tau_{\rm L}} \\ \tau_{\rm L} \end{array} \right)$
u _R d _R e _R	$c_{ m R} \\ s_{ m R} \\ \mu_{ m R}$	${ m t_R} { m b_R} { m au_R}$
$egin{array}{c} \gamma \ m{g} \ W^{\pm}, Z^{\circ} \ H \end{array}$		

È

- Remember the particle zoo
- treat only the carrier of the interaction γ
- as well as the e

 $\left(\begin{array}{c} e_L \end{array}\right)$

 e_R

Lagrangian field theory

Þ

The Lagrangian and the Action

The Lagrangian is defined by

$$L = T - V$$

Lagrangian field theory

The Lagrangian and the Action

The Lagrangian is defined by

$$L = T - V$$

The action is the time integration of the Lagrangian, $S = \int Ldt$. This is a functional: its argument is a function and it returns a number.

The Lagrangian and the Action

The Lagrangian is defined by

$$L = T - V$$

The action is the time integration of the Lagrangian, $S = \int Ldt$. This is a functional: its argument is a function and it returns a number.

Assuming that the Action should be minimal

$$S = \int_{t_1}^{t_2} L(q, \dot{q}) dt$$
 with $\delta S = 0$

(the $q_i(t)$ being the generalized coordinates) leads to the Euler-Lagrange equation

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = 0$$

The familiar equations of motion can be obtained from this equation.

Lagrangian density

Lagrangian formalism is now applied to fields, which are functions of spacetime $\psi(x, t)$. The Lagrangian is, in the continuous case, the space integration of the Lagrangian density.

$$L=T-V=\int \mathcal{L}d^3x$$

and the action becomes

$$S = \int L dt = \int \mathcal{L} d^4 x$$

Typically,

$$\mathcal{L} = \mathcal{L}(\psi, \partial_{\mu}\psi)$$

From a Lagrangian density and the Euler-Lagrange equation, equations governing the evolution of particles (i.e. fields) can be derived.

The photon

Maxwell equations:

$$\begin{array}{lll} \partial_{\mu}F^{\mu\nu}(\mathbf{x}) &=& j^{\nu}(\mathbf{x})\\ \epsilon^{\mu\nu\rho\sigma}\partial_{\nu}F_{\rho\sigma}(\mathbf{x}) &=& 0 \end{array}$$

with the photon field tensor:

 $\begin{aligned} F^{\mu\nu}(\mathbf{x}) &= \partial^{\mu} A^{\nu}(\mathbf{x}) - \partial^{\nu} A^{\mu}(\mathbf{x}) \\ F_{\mu\nu}(\mathbf{x}) &= \partial_{\mu} A_{\nu}(\mathbf{x}) - \partial_{\nu} A_{\mu}(\mathbf{x}) \end{aligned}$

 A^{μ} being the usual vector potential,

$$\mathbf{A} = (\psi, \vec{A}) \text{ and } j^{\nu}(\mathbf{x}) = \begin{pmatrix} \rho(\mathbf{x}) \\ \vec{j}(\mathbf{x}) \end{pmatrix},$$

the current density.

F is antisymmetric, $F_{\mu\nu} = -F_{\nu\mu}$ and has 6 independent components

$$\vec{E} = (E_x, E_y, E_z) = (F_{01}, F_{02}, F_{03})$$

 $\vec{B} = (B_x, B_y, B_z) = (-F_{23}, -F_{31}, -F_{12})$

The potentials are not unique and are determined up to a *gauge* transformation $A_{\mu} \rightarrow A_{\mu} + \partial_{\mu}\chi$ where χ is arbitrary.

The field strengths are invariant under this transformation (the ∂ s commute...).

We can restrict the gauge and there exist plenty of them. We will often refer to the Lorentz gauge $\partial_{\mu}A^{\mu} = 0$.

The current satisfies the continuity equation which, in 4-dimension, is a vanishing 4-divergence $\partial_{\mu}j^{\mu} = 0$.

If you use the Lorentz gauge on the inhomogeneous Maxwell equations, you get the simplified and equivalent equation

 $\Box A^{\nu} = j^{\nu}$

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

The fermions

Schrödinger equation is
$$i\hbar \frac{\partial \psi}{\partial t} = \hat{H}\psi$$
, with $\hat{H} = -\frac{\hbar^2}{2m}\nabla^2 + V$.

However \hat{H} should be chosen now to respect special relativy.

Writing $P^{\mu} = i\partial^{\mu}$, \hat{H} should fulfill

$$\hat{H}^2 = \vec{P}^2 + m^2 = \sum_k (P^k)^2 + m^2$$

Let's take a matrix form to solve the problem (obviously it cannot be a number...)

$$\hat{H} = \sum_{k=1}^{3} \alpha^{k} P^{k} + \beta m = \vec{\alpha} \cdot \vec{P} + \beta m$$

By putting \hat{H} to the square you get some constraints on $\vec{\alpha}$ and β :

$$\begin{aligned} \alpha^{k} \alpha^{l} + \alpha^{l} \alpha^{k} &= 2\delta^{kl}, \\ \alpha^{k} \beta + \beta \alpha^{k} &= 0, \quad \beta^{2} = 1 \end{aligned}$$

The fermions

Schrödinger equation is $i\hbar \frac{\partial \psi}{\partial t} = \hat{H}\psi$, with $\hat{H} = -\frac{\hbar^2}{2m}\nabla^2 + V.$

However \hat{H} should be chosen now to respect special relativy.

Writing $P^{\mu} = i\partial^{\mu}$, \hat{H} should fulfill

$$\hat{H}^2 = \vec{P}^2 + m^2 = \sum_k (P^k)^2 + m^2$$

Let's take a matrix form to solve the problem (obviously it cannot be a number...)

$$\hat{H} = \sum_{k=1}^{3} \alpha^{k} P^{k} + \beta m = \vec{\alpha}.\vec{P} + \beta m$$

By putting \hat{H} to the square you get some constraints on $\vec{\alpha}$ and β :

$$\begin{aligned} \alpha^{k} \alpha^{l} + \alpha^{l} \alpha^{k} &= 2\delta^{kl}, \\ \alpha^{k} \beta + \beta \alpha^{k} &= 0, \quad \beta^{2} = \end{aligned}$$

This implies that : $\beta^2 = 1$, $(\alpha^k)^2 = 1$, $Tr(\beta) = Tr(\alpha) = 1$, and eigenvalues of α^k and β are ± 1

The wave function has to be a 4-component column.

The α and β can be redefined in $\gamma^0 = \beta$, $\gamma^k = \beta \alpha^k$, with $\gamma^\mu = (\gamma^0, \vec{\gamma})$

One common representation is the *Dirac* representation :

$$\gamma^{0} = \begin{pmatrix} \mathbb{1} & 0\\ 0 & -\mathbb{1} \end{pmatrix}, \quad \gamma^{k} = \begin{pmatrix} 0 & \sigma^{k}\\ -\sigma^{k} & 0 \end{pmatrix}$$

The previous set of equations is rewritten as $\gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = \{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}\mathbb{1}$

 γ^5 is often introduced, $\gamma^5=i\gamma^0\gamma^1\gamma^2\gamma^3,$ leading to

$$(\gamma^5)^2 = \mathbb{1}_4$$
 and $\{\gamma^5, \gamma^\mu\} = 0$

F. Machefert (Cours Master 2 - X - PHE)

Dirac equation

The Dirac equation is then $i\frac{\partial\psi}{\partial t} = (\vec{\alpha}.\vec{P} + \beta m)\psi$

and by multiplication with β , we obtain $i\beta\partial_0\psi = -i\beta\alpha^k\partial_k\psi + \beta^2m\psi$

which transforms into $i\gamma^0\partial_0\psi + i\gamma^k\partial_k\psi - m\psi = i\gamma^\mu\partial_\mu\psi - m\psi = 0$

The Dirac equation final form is:

$$(i\gamma^{\mu}\partial_{\mu}-m)\psi(\mathbf{x})=0$$

Lagrangians...

Applying Euler-Lagrange on the Lagrangian $\mathcal{L} = \bar{\psi}(\mathbf{x})(i\gamma^{\mu}\partial_{\mu} - m)\psi(\mathbf{x})$ gives the Dirac equation with $\bar{\psi} = \psi^{\dagger}\gamma^{0} = \psi^{T^{\star}}\gamma^{0}$

Euler-Lagrange on $\mathcal{L} = \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$, you obtain $\partial_{\mu} F^{\mu\nu} = 0$

- 4 同 6 4 日 6 4 日 6 - 日

Dirac equation

The Dirac equation is then $i\frac{\partial\psi}{\partial t} = (\vec{\alpha}.\vec{P} + \beta m)\psi$

and by multiplication with β , we obtain $i\beta\partial_0\psi = -i\beta\alpha^k\partial_k\psi + \beta^2m\psi$

which transforms into $i\gamma^0\partial_0\psi + i\gamma^k\partial_k\psi - m\psi = i\gamma^\mu\partial_\mu\psi - m\psi = 0$

The Dirac equation final form is:

$$(i\gamma^{\mu}\partial_{\mu}-m)\psi(\mathbf{x})=0$$

Lagrangians...

Applying Euler-Lagrange on the Lagrangian $\mathcal{L} = \bar{\psi}(\mathbf{x})(i\gamma^{\mu}\partial_{\mu} - m)\psi(\mathbf{x})$ gives the Dirac equation with $\bar{\psi} = \psi^{\dagger}\gamma^{0} = \psi^{T^{\star}}\gamma^{0}$

Euler-Lagrange on $\mathcal{L} = \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$, you obtain $\partial_{\mu} F^{\mu\nu} = 0$

The free Lagrangian (\mathcal{L}_0)

$$\mathcal{L}_0 = -\frac{1}{4} F_{\mu\nu}(\mathbf{x}) F^{\mu\nu}(\mathbf{x}) + \bar{\psi}(\mathbf{x}) (i\gamma^{\mu}\partial_{\mu} - m)\psi(\mathbf{x})$$

F. Machefert (Cours Master 2 - X - PHE)

イロト イポト イヨト イヨト

э

Minimal Substitution

È

Minimal Substitution

$$egin{aligned} &i\partial_\mu o i\partial_\mu + e A_\mu(\mathbf{x}) \ &ar{\psi}(\mathbf{x}) \gamma^\mu i \partial_\mu \psi(\mathbf{x}) \end{aligned}$$

æ

Minimal Substitution

È

Minimal Substitution

$$egin{aligned} & i\partial_{\mu}
ightarrow i\partial_{\mu} + e A_{\mu}(\mathbf{x}) \ & ar{\psi}(\mathbf{x})\gamma^{\mu}i\partial_{\mu}\psi(\mathbf{x}) \ &
ightarrow ar{\psi}(\mathbf{x})\gamma^{\mu}(i\partial_{\mu} + e A_{\mu}(\mathbf{x}))\psi(\mathbf{x}) \end{aligned}$$

Minimal Substitution

Minimal Substitution

$$\begin{split} i\partial_{\mu} &\to i\partial_{\mu} + eA_{\mu}(\mathbf{x}) \\ \bar{\psi}(\mathbf{x})\gamma^{\mu}i\partial_{\mu}\psi(\mathbf{x}) \\ &\to \quad \bar{\psi}(\mathbf{x})\gamma^{\mu}(i\partial_{\mu} + eA_{\mu}(\mathbf{x}))\psi(\mathbf{x}) \\ &= \quad \bar{\psi}(\mathbf{x})\gamma^{\mu}i\partial_{\mu}\psi(\mathbf{x}) + e\bar{\psi}(\mathbf{x})\gamma^{\mu}A_{\mu}(\mathbf{x})\psi(\mathbf{x}) \end{split}$$

leads to a coupling between photon and fermion fields:

⊒ ⊳

Minimal Substitution

Minimal Substitution

$$\begin{split} i\partial_{\mu} &\rightarrow i\partial_{\mu} + eA_{\mu}(\mathbf{x}) \\ \bar{\psi}(\mathbf{x})\gamma^{\mu}i\partial_{\mu}\psi(\mathbf{x}) \\ &\rightarrow \quad \bar{\psi}(\mathbf{x})\gamma^{\mu}(i\partial_{\mu} + eA_{\mu}(\mathbf{x}))\psi(\mathbf{x}) \\ &= \quad \bar{\psi}(\mathbf{x})\gamma^{\mu}i\partial_{\mu}\psi(\mathbf{x}) + e\bar{\psi}(\mathbf{x})\gamma^{\mu}A_{\mu}(\mathbf{x})\psi(\mathbf{x}) \end{split}$$

leads to a coupling between photon and fermion fields:

Interaction Lagrangian \mathcal{L}'

$$\mathcal{L}' = -j^{\mu} \mathcal{A}_{\mu} = e \bar{\psi}(\mathbf{x}) \gamma^{\mu} \mathcal{A}_{\mu}(\mathbf{x}) \psi(\mathbf{x})$$

the negative sign for $j^{\mu} = -e\bar{\psi}(\mathbf{x})\gamma^{\mu}\psi(\mathbf{x})$

< 3 b

È

Dirac equation

$$d\gamma^{\mu}\partial_{\mu}\psi - m\psi = 0$$

Dirac equation

$$i\gamma^{\mu}\partial_{\mu}\psi - m\psi = 0$$

$$-i(\gamma^{\mu})^{\star}\partial_{\mu}\psi^{\star} - m\psi^{\star} = 0$$

Dirac equation

$$\begin{split} &i\gamma^{\mu}\partial_{\mu}\psi - m\psi &= 0\\ &-i(\gamma^{\mu})^{\star}\partial_{\mu}\psi^{\star} - m\psi^{\star} &= 0\\ &-i(\partial_{\mu}\psi^{\dagger})(\gamma^{\mu})^{\dagger} - m\psi^{\dagger} &= 0 \end{split}$$

Dirac equation

$$\begin{aligned} &\dot{\gamma}^{\mu}\partial_{\mu}\psi - m\psi &= 0\\ &-i(\gamma^{\mu})^{\star}\partial_{\mu}\psi^{\star} - m\psi^{\star} &= 0\\ &-i(\partial_{\mu}\psi^{\dagger})(\gamma^{\mu})^{\dagger} - m\psi^{\dagger} &= 0 \end{aligned}$$

$$-i(\partial_{\mu}\psi^{\dagger})\gamma^{\circ}\gamma^{\circ}(\gamma^{\mu})^{\dagger}\gamma^{\circ} - m\psi^{\dagger}\gamma^{\circ} = 0$$

Dirac equation

$$\begin{split} &i\gamma^{\mu}\partial_{\mu}\psi - m\psi &= 0\\ &-i(\gamma^{\mu})^{*}\partial_{\mu}\psi^{*} - m\psi^{*} &= 0\\ &-i(\partial_{\mu}\psi^{\dagger})(\gamma^{\mu})^{\dagger} - m\psi^{\dagger} &= 0\\ &-i(\partial_{\mu}\psi^{\dagger})\gamma^{\circ}\gamma^{\circ}(\gamma^{\mu})^{\dagger}\gamma^{\circ} - m\psi^{\dagger}\gamma^{\circ} &= 0\\ &-i(\partial_{\mu}\psi)\gamma^{\circ}(\gamma^{\mu})^{\dagger}\gamma^{\circ} - m\overline{\psi} &= 0 \end{split}$$

Dirac equation

$$i\gamma^{\mu}\partial_{\mu}\psi - m\psi = 0$$

$$-i(\gamma^{\mu})^{*}\partial_{\mu}\psi^{*} - m\psi^{*} = 0$$

$$-i(\partial_{\mu}\psi^{\dagger})(\gamma^{\mu})^{\dagger} - m\psi^{\dagger} = 0$$

$$-i(\partial_{\mu}\psi^{\dagger})\gamma^{\circ}\gamma^{\circ}(\gamma^{\mu})^{\dagger}\gamma^{\circ} - m\psi^{\dagger}\gamma^{\circ} = 0$$

$$-i(\partial_{\mu}\psi)\gamma^{\circ}(\gamma^{\mu})^{\dagger}\gamma^{\circ} - m\overline{\psi} = 0$$

$$-i(\partial_{\mu}\psi)\gamma^{\mu} - m\overline{\psi} = 0$$

Dirac equation

Dirac equation for adjoint spinor

э

- E - F

÷
Quantum Electrodynamics

Dirac equation

Dirac equation for adjoint spinor

$$\begin{aligned} &\dot{\gamma}^{\mu}\partial_{\mu}\psi - m\psi &= 0\\ &-i(\gamma^{\mu})^{\star}\partial_{\mu}\psi^{\star} - m\psi^{\star} &= 0\\ &-i(\partial_{\mu}\psi^{\dagger})(\gamma^{\mu})^{\dagger} - m\psi^{\dagger} &= 0\\ &-i(\partial_{\mu}\psi^{\dagger})\gamma^{\circ}\gamma^{\circ}(\gamma^{\mu})^{\dagger}\gamma^{\circ} - m\psi^{\dagger}\gamma^{\circ} &= 0\\ &-i(\partial_{\mu}\overline{\psi})\gamma^{\circ}(\gamma^{\mu})^{\dagger}\underline{\gamma}^{\circ} - m\overline{\psi} &= 0\\ &-i(\partial_{\mu}\overline{\psi})\gamma^{\mu} - m\overline{\psi} &= 0\\ &i(\partial_{\mu}\psi)\gamma^{\mu} + m\overline{\psi} &= 0 \end{aligned}$$

EM current conserved

$$\begin{array}{rcl} \partial_{\mu}j^{\mu} &=& \partial_{\mu}[-e\bar{\psi}\gamma^{\mu}\psi]\\ &=& -e(\partial_{\mu}\bar{\psi})\gamma^{\mu}\psi - e\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi & \textit{Dirac}\\ &=& -ime\bar{\psi}\psi + iem\bar{\psi}\psi & \textit{Dirac adjoint}\\ &=& 0 \end{array}$$

Gauge Invariance

Invariance of the Lagrangian under local U(1) transformations or: why should physics depend on the location ?

$$\begin{array}{rcl} \mathbf{A}_{\mu} & \rightarrow & \mathbf{A}_{\mu} + \partial_{\mu} \Lambda(\mathbf{x}) \\ \psi(\mathbf{x}) & \rightarrow & \exp\left(ie\Lambda(\mathbf{x})\right)\psi(\mathbf{x}) \\ \mathcal{L}_{0} + \mathcal{L}' = \mathcal{L} \rightarrow \mathcal{L} \end{array}$$

Local gauge invariance under a U(1) gauge symmetry (1929 Weyl) if $\Lambda \neq f(\mathbf{x})$ it is a global U(1) symmetry.

U(1) Gauge invariance:

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

U(1) Gauge invariance:

Photon field

$$\begin{aligned} F_{\mu\nu} &= \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} \\ &= \partial_{\mu} (A_{\nu} + \partial_{\nu} \Lambda) - \partial_{\nu} (A_{\mu} + \partial_{\mu} \Lambda) \end{aligned}$$

э

U(1) Gauge invariance:

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

$$= \partial_{\mu}(\mathbf{A}_{\nu} + \partial_{\nu}\Lambda) - \partial_{\nu}(\mathbf{A}_{\mu} + \partial_{\mu}\Lambda)$$

$$= \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} + \partial_{\mu} \partial_{\nu} \Lambda - \partial_{\nu} \partial_{\mu} \Lambda$$

U(1) Gauge invariance:

$$\begin{aligned} F_{\mu\nu} &= \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} \\ &= \partial_{\mu}(A_{\nu} + \partial_{\nu}\Lambda) - \partial_{\nu}(A_{\mu} + \partial_{\mu}\Lambda) \\ &= \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + \partial_{\mu}\partial_{\nu}\Lambda - \partial_{\nu}\partial_{\mu}\Lambda \quad \frac{\partial_{\mu}\partial_{\nu}}{\partial_{\nu}} = \partial_{\nu}\partial_{\mu} \end{aligned}$$

U(1) Gauge invariance:

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

= $\partial_{\mu}(A_{\nu} + \partial_{\nu}\Lambda) - \partial_{\nu}(A_{\mu} + \partial_{\mu}\Lambda)$
= $\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + \partial_{\mu}\partial_{\nu}\Lambda - \partial_{\nu}\partial_{\mu}\Lambda \quad \partial_{\mu}\partial_{\nu} = \partial_{\nu}\partial_{\mu}$
= $\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$

U(1) Gauge invariance:

Photon field

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

= $\partial_{\mu}(A_{\nu} + \partial_{\nu}\Lambda) - \partial_{\nu}(A_{\mu} + \partial_{\mu}\Lambda)$
= $\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + \partial_{\mu}\partial_{\nu}\Lambda - \partial_{\nu}\partial_{\mu}\Lambda \quad \partial_{\mu}\partial_{\nu} = \partial_{\nu}\partial_{\mu}$
= $\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$
= $F_{\mu\nu}$

Photon field ok

⊒ ⊳

Fermion field

$$ar{\psi}(i\gamma^{\mu}\partial_{\mu}-m)\psi$$

F. Machefert (Cours Master 2 - X - PHE) Advanced Particle Physics - Ecole Polytechnique

E) E

Fermion field

$$ar{\psi}(i\gamma^\mu\partial_\mu-m)\psi
onumber \ \psi^\dagger\gamma^0(i\gamma^\mu\partial_\mu-m)\psi$$

=

< 17 > <

Ì

Fermion field

$$\bar{\psi}(i\gamma^{\mu}\partial_{\mu}-m)\psi$$

$$= \psi^{\dagger}\gamma^{0}(i\gamma^{\mu}\partial_{\mu}-m)\psi$$

$$\rightarrow \psi^{\dagger} \exp{(-ie\Lambda)\gamma^{0}(i\gamma^{\mu}\partial_{\mu}-m)(\psi\exp{(ie\Lambda)})}$$

Fermion field

$$\bar{\psi}(i\gamma^{\mu}\partial_{\mu}-m)\psi$$

$$\rightarrow \psi^{\dagger} \exp{(-ie\Lambda)\gamma^{0}(i\gamma^{\mu}\partial_{\mu}-m)(\psi\exp{(ie\Lambda)})}$$

$$= \exp(-ie\Lambda)\overline{\psi}(i\gamma^{\mu}\partial_{\mu}-m)(\psi\exp(ie\Lambda))$$

$$ar{\psi}(i\gamma^{\mu}\partial_{\mu}-m)\psi$$

$$\rightarrow \psi^{\dagger} \exp{(-ie\Lambda)\gamma^{0}(i\gamma^{\mu}\partial_{\mu}-m)(\psi\exp{(ie\Lambda)})}$$

$$= \exp{(-ie\Lambda)} \overline{\psi} (i\gamma^{\mu}\partial_{\mu} - m)(\psi \exp{(ie\Lambda)})$$

$$= -\exp{(-ie\Lambda)}ar{\psi}i\gamma^{\mu}(\partial_{\mu}\psi)\exp{(ie\Lambda)}$$

+
$$\exp(-ie\Lambda)\overline{\psi}i\gamma^{\mu}\psi\partial_{\mu}\exp(ie\Lambda))$$

+
$$\exp(-ie\Lambda)\overline{\psi}(-m)\psi\exp(ie\Lambda)$$

$$ar{\psi}(i\gamma^{\mu}\partial_{\mu}-m)\psi$$

$$\rightarrow \psi^{\dagger} \exp{(-ie\Lambda)\gamma^{0}(i\gamma^{\mu}\partial_{\mu}-m)(\psi\exp{(ie\Lambda)})}$$

$$= \exp{(-ie\Lambda)}\overline{\psi}(i\gamma^{\mu}\partial_{\mu}-m)(\psi\exp{(ie\Lambda)})$$

$$=$$
 exp $(-ie\Lambda)ar{\psi}i\gamma^{\mu}(\partial_{\mu}\psi)\exp(ie\Lambda)$

+
$$\exp(-ie\Lambda)\bar{\psi}i\gamma^{\mu}\psi\partial_{\mu}\exp(ie\Lambda))$$

+
$$\exp(-ie\Lambda)\overline{\psi}(-m)\psi\exp(ie\Lambda)$$

$$=$$
 $\bar{\psi}i\gamma^{\mu}(\partial_{\mu}\psi)$

$$\bar{\psi}(i\gamma^{\mu}\partial_{\mu}-m)\psi$$

$$ightarrow \psi^{\dagger} \exp{(-ie\Lambda)} \gamma^{0} (i \gamma^{\mu} \partial_{\mu} - m) (\psi \exp{(ie\Lambda)})$$

$$= \exp{(-ie\Lambda)}\overline{\psi}(i\gamma^{\mu}\partial_{\mu}-m)(\psi\exp{(ie\Lambda)})$$

$$= \exp\left(-ie\Lambda\right) \bar{\psi} i \gamma^{\mu} (\partial_{\mu} \psi) \exp\left(ie\Lambda\right)$$

+
$$\exp(-ie\Lambda)\bar{\psi}i\gamma^{\mu}\psi\partial_{\mu}\exp(ie\Lambda))$$

+
$$\exp(-ie\Lambda)\overline{\psi}(-m)\psi\exp(ie\Lambda)$$

$$= \quad \bar{\psi}i\gamma^{\mu}(\partial_{\mu}\psi) + \exp\left(-ie\Lambda\right)\bar{\psi}i\gamma^{\mu}\psi ie\partial_{\mu}\Lambda\exp\left(ie\Lambda\right)$$

< 17 ▶

$$ar{\psi}({\it i}\gamma^\mu\partial_\mu-{\it m})\psi$$

$$ightarrow \psi^{\dagger} \exp{(-ie\Lambda)} \gamma^{0} (i \gamma^{\mu} \partial_{\mu} - m) (\psi \exp{(ie\Lambda)})$$

$$= \exp{(-ie\Lambda)}\overline{\psi}(i\gamma^{\mu}\partial_{\mu}-m)(\psi\exp{(ie\Lambda)})$$

$$= \exp(-ie\Lambda)\bar{\psi}i\gamma^{\mu}(\partial_{\mu}\psi)\exp(ie\Lambda)$$

+
$$\exp(-ie\Lambda)\bar{\psi}i\gamma^{\mu}\psi\partial_{\mu}\exp(ie\Lambda))$$

+
$$\exp(-ie\Lambda)\overline{\psi}(-m)\psi\exp(ie\Lambda)$$

$$\bar{\psi} = -\bar{\psi}i\gamma^{\mu}(\partial_{\mu}\psi) + \exp{(-ie\Lambda)}\bar{\psi}i\gamma^{\mu}\psi ie\partial_{\mu}\Lambda\exp{(ie\Lambda)}$$

+
$$\overline{\psi}(-m)\psi$$

< 17 ▶

$$ar{\psi}(i\gamma^\mu\partial_\mu-m)\psi$$

$$\rightarrow \psi^{\dagger} \exp{(-ie\Lambda)\gamma^{0}(i\gamma^{\mu}\partial_{\mu}-m)(\psi\exp{(ie\Lambda)})}$$

$$= \exp{(-ie\Lambda)} \overline{\psi} (i\gamma^{\mu}\partial_{\mu} - m)(\psi \exp{(ie\Lambda)})$$

$$=$$
 exp $(-ie\Lambda)ar{\psi}i\gamma^{\mu}(\partial_{\mu}\psi)\exp(ie\Lambda)$

+
$$\exp(-ie\Lambda)\bar{\psi}i\gamma^{\mu}\psi\partial_{\mu}\exp(ie\Lambda))$$

+
$$\exp(-ie\Lambda)\overline{\psi}(-m)\psi\exp(ie\Lambda)$$

$$= \bar{\psi}i\gamma^{\mu}(\partial_{\mu}\psi) - e\bar{\psi}\gamma^{\mu}(\partial_{\mu}\Lambda)\psi$$

+
$$\bar{\psi}(-m)\psi$$

F. Machefert (Cours Master 2 - X - PHE) Advanced Particle Physics - Ecole Polytechnique

문 🛌 문

$$ar{\psi}(i\gamma^{\mu}\partial_{\mu}-m)\psi$$

 $\rightarrow \psi^{\dagger} \exp{(-ie\Lambda)\gamma^{0}(i\gamma^{\mu}\partial_{\mu}-m)(\psi\exp{(ie\Lambda)})}$

$$= \exp{(-ie\Lambda)} \overline{\psi} (i\gamma^{\mu}\partial_{\mu} - m)(\psi \exp{(ie\Lambda)})$$

$$= \exp\left(-ie\Lambda\right)\bar{\psi}i\gamma^{\mu}(\partial_{\mu}\psi)\exp\left(ie\Lambda\right)$$

+
$$\exp(-ie\Lambda)\bar{\psi}i\gamma^{\mu}\psi\partial_{\mu}\exp(ie\Lambda))$$

+
$$\exp(-ie\Lambda)\overline{\psi}(-m)\psi\exp(ie\Lambda)$$

$$= \bar{\psi}i\gamma^{\mu}(\partial_{\mu}\psi) - e\bar{\psi}\gamma^{\mu}(\partial_{\mu}\Lambda)\psi$$

+
$$\bar{\psi}(-m)\psi$$

$$= \quad \bar{\psi}(i\gamma^{\mu}\partial_{\mu}-m)\psi - e\bar{\psi}\gamma^{\mu}(\partial_{\mu}\Lambda)\psi$$

문 🛌 문

Interaction

 $e \bar{\psi} \gamma^{\mu} A_{\mu} \psi(\mathbf{x})$

Interaction

$$e\bar{\psi}\gamma^{\mu}A_{\mu}\psi(\mathbf{x})$$

$$= e\exp(-ie\Lambda)\bar{\psi}\gamma^{\mu}(A_{\mu}+\partial_{\mu}\Lambda)\psi\exp(ie\Lambda)$$

Interaction

$$\begin{array}{l} e\bar{\psi}\gamma^{\mu}\mathcal{A}_{\mu}\psi(\mathbf{x}) \\ = & e\exp\left(-ie\Lambda\right)\bar{\psi}\gamma^{\mu}(\mathcal{A}_{\mu}+\partial_{\mu}\Lambda)\psi\exp\left(ie\Lambda\right) \\ = & e\bar{\psi}\gamma^{\mu}(\mathcal{A}_{\mu}+\partial_{\mu}\Lambda)\psi \end{array}$$

Interaction

$$\begin{array}{rcl} & e\bar{\psi}\gamma^{\mu}A_{\mu}\psi(\mathbf{x}) \\ = & e\exp\left(-ie\Lambda\right)\bar{\psi}\gamma^{\mu}(A_{\mu}+\partial_{\mu}\Lambda)\psi\exp\left(ie\Lambda\right) \\ = & e\bar{\psi}\gamma^{\mu}(A_{\mu}+\partial_{\mu}\Lambda)\psi \\ = & e\bar{\psi}\gamma^{\mu}A_{\mu}\psi \end{array}$$

Interaction

$$\begin{aligned} & e\bar{\psi}\gamma^{\mu}A_{\mu}\psi(\mathbf{x})\\ &= e\exp\left(-ie\Lambda\right)\bar{\psi}\gamma^{\mu}(A_{\mu}+\partial_{\mu}\Lambda)\psi\exp\left(ie\Lambda\right)\\ &= e\bar{\psi}\gamma^{\mu}(A_{\mu}+\partial_{\mu}\Lambda)\psi\\ &= e\bar{\psi}\gamma^{\mu}A_{\mu}\psi+e\bar{\psi}\gamma^{\mu}(\partial_{\mu}\Lambda)\psi \end{aligned}$$

Interaction

$$\begin{array}{l} e\bar{\psi}\gamma^{\mu}A_{\mu}\psi(\mathbf{x})\\ = & e\exp\left(-ie\Lambda\right)\bar{\psi}\gamma^{\mu}(A_{\mu}+\partial_{\mu}\Lambda)\psi\exp\left(ie\Lambda\right)\\ = & e\bar{\psi}\gamma^{\mu}(A_{\mu}+\partial_{\mu}\Lambda)\psi\\ = & e\bar{\psi}\gamma^{\mu}A_{\mu}\psi+e\bar{\psi}\gamma^{\mu}(\partial_{\mu}\Lambda)\psi \end{array}$$

• Interaction term combined with fermion field $(-ie\bar{\psi}\gamma^{\mu}\partial_{\mu}\Lambda\psi)$ ok

3) J

Interaction

$$\begin{array}{l} e\bar{\psi}\gamma^{\mu}A_{\mu}\psi(\mathbf{x})\\ = & e\exp\left(-ie\Lambda\right)\bar{\psi}\gamma^{\mu}(A_{\mu}+\partial_{\mu}\Lambda)\psi\exp\left(ie\Lambda\right)\\ = & e\bar{\psi}\gamma^{\mu}(A_{\mu}+\partial_{\mu}\Lambda)\psi\\ = & e\bar{\psi}\gamma^{\mu}A_{\mu}\psi+e\bar{\psi}\gamma^{\mu}(\partial_{\mu}\Lambda)\psi \end{array}$$

- Interaction term combined with fermion field $(-ie\bar{\psi}\gamma^{\mu}\partial_{\mu}\Lambda\psi)$ ok
- gauge invariance of the fermion field cries for the introduction of a gauge boson!

Solutions to the Dirac equation

The free-particle plane wave solution is the most natural solution to the Dirac equation

$$\psi(\mathbf{x}) = u(E, p)e^{i(p.x-Et)}$$

u(E, p) being a four-component Dirac spinor. The overall wavefunction must satisfy the Dirac equation

 $(i\gamma^{\mu}\partial_{\mu}-m)\psi=0$

From the form of this solution and of the Dirac equation, the Dirac Spinor should satisfy

 $(\gamma^{\mu}p_{\mu}-m)u=0$

伺 ト イ ヨ ト イ ヨ ト

Negative energy solutions are back

If we look at those solutions at rest, we get

$$\psi(E,0)=u(E,0)e^{-iEt}$$

That reduces to the Spinor equation $E\gamma^0 u = mu$ that can be expressed as

$$E\begin{pmatrix}1&0&0&0\\0&1&0&0\\0&0&-1&0\\0&0&0&-1\end{pmatrix}\begin{pmatrix}u_1\\u_2\\u_3\\u_4\end{pmatrix}=m\begin{pmatrix}u_1\\u_2\\u_3\\u_4\end{pmatrix}$$

Out of the four orthogonal solutions, 2 have positive energies (E = m) and two have *negative ones* (E = -m). Hence, we did not resolve the energy solution problem !

It can be shown that those states are also eigenstates of the \hat{S}_z operator, two representing spin-up and two spin-down solutions.

Stückelberg - Feynman

The *negative* energy solutions are interpreted as *particles* propagating *backwards* in time.

They correspond to *positive* energy *anti-particle* propagating *forwards* in time.

Anti-particle spinors

The wavefunction of the particle (its exponential part e^{-iEt}) is unchanged under the simultaneous transformation of energy and time $E \rightarrow -E$, $t \rightarrow -t$.

Instead of working with negative energy solutions moving backwards in time u_3 and u_4 , it is simpler to change the definition and work with spinors for anti-particles moving forward in time, v_1 and v_2 , reversing the sign of *E* and *p*:

$$u_1(E,p)e^{-i(p.x-Et)} = u_4(-E,-p)e^{i[-p.x-(-Et)]}$$

$$v_2(E,p)e^{-i(p.x-Et)} = u_3(-E,-p)e^{i[-p.x-(-Et)]}$$

which comes originally from identifying the anti-particle spinors as

$$\psi(\mathbf{x}) = v(E, p)e^{-i(p.x-Et)}$$

where the exponent sign as been reversed. Once more we have two negative energy anti-particle solutions : v_3 and v_4 . We could work either with particle spinors (u_i) or anti-particle spinors (v_i).

We prefer sometimes to mix particles and anti-particles to have only *positive* energy solutions to the Dirac equations.

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Charge conjugaison and Dirac equation

The Dirac equation for electrons, incorporating the interaction (minimal substitution) is

$$\gamma^{\mu}(\partial_{\mu} - ieA_{\mu})\psi + im\psi = 0$$

Let's try to get the equation for a positron. First we multiply on the left by $-i\gamma^2$ the complex conjugate:

$$-i\gamma^2(\gamma^\mu)^\star(\partial_\mu+ieA_\mu)\psi^\star-m\gamma^2\psi^\star=0$$

which becomes using γ relations

$$\gamma^{\mu}(\partial_{\mu}+ieA_{\mu})i\gamma^{2}\psi^{\star}+imi\gamma^{2}\psi^{\star}=0$$

Defining ψ' as $\psi' = i\gamma^2 \psi^*$, the Dirac equation becomes

$$\gamma^{\mu}(\partial_{\mu} + ieA_{\mu})\psi' + im\psi' = 0$$

We obtained the Dirac equation for a positron if we identify it with $\psi' = \hat{C}\psi = i\gamma^2\psi$, \hat{C} being then the charge conjugaison operator.

Stückelberg - Feynman

\hat{C} effect on the spinors

From the Dirac equation, the u_1 , for example, can be found: $u_1(E,p) = \sqrt{E+m} \begin{pmatrix} 1 \\ 0 \\ \frac{p_z}{E+m} \\ \frac{p_x + ip_y}{E+m} \end{pmatrix}$ and

applying \hat{C} on u_1 , we get,

$$i\gamma^{2}u_{i}^{\star} = i \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \end{pmatrix} \sqrt{E+m} \begin{pmatrix} 1 \\ 0 \\ \frac{p_{z}}{E+m} \\ \frac{p_{z}+ip_{y}}{E+m} \end{pmatrix}^{\star} = \sqrt{E+m} \begin{pmatrix} \frac{p_{x}-ip_{y}}{E+m} \\ \frac{-p_{z}}{E+m} \\ 0 \\ 1 \end{pmatrix}$$

which can be identified as the solution v_1 that we mentioned earlier.

$$\psi = u_1 e^{i(\rho.x - Et)} \rightarrow^{(\hat{C})} \psi' = v_1 e^{-i(\rho.x - Et)}$$
$$\psi = u_2 e^{i(\rho.x - Et)} \rightarrow^{(\hat{C})} \psi' = v_2 e^{-i(\rho.x - Et)}$$

Time ordered perturbation theory

The process

We suppose that two particles (a, b) interact and produce (c, d) in the final state with the exchange of a particle χ . This can be done with two time ordered pictures :

Perturbation Theory

The matrix elements are in perturbation theory,

$$T_{fi}^{ab} = \frac{\langle f|V|j \rangle \langle j|V|i \rangle}{E_i - E_j} = \frac{\langle d|V|\chi + b \rangle \langle c + \chi|V|a \rangle}{(E_a + E_b) - (E_c + E_\chi + E_b)}$$

This is the non-invariant matrix-element that we normalize by $\sqrt{\prod_k 2E_k}$ (k is the index of the particles involved) in order to make it Lorentz invariant

$$\mathcal{M}_{a \to c+\chi} = < c + \chi |V| a > \sqrt{2E_a 2E_c 2E_\chi}$$

Remember that by changing the Lorentz frame, the volume contracts by a factor $\gamma = E/m$. Hence, the density increases by γ . The convention consists in normalizing the wave functions to 2E particles/unit volume $\int \psi'^* \psi' dV = 2E$, instead of $\int \psi^* \psi dV = 1$ in NR-QM. Hence, $\psi' = \sqrt{2E}\psi$.

Time ordered perturbation theory

The requirement that the matrix elements $M_{a \to c+\chi}$ are Lorentz invariant is a strong constraint on their form. Let's take the example of the scalar coupling $M_{a \to c+\chi} = g_a$. Hence,

$$<$$
 c + $\chi |V|a> = rac{g_a}{\sqrt{2E_a 2E_c 2E_\chi}}$

Similarly

$$<$$
 d $|V|\chi$ + b $>= rac{g_b}{\sqrt{2E_b 2E_d 2E_\chi}}$

where g_b is the coupling of *b* with (χ, d) . T_{fi}^{ab} becomes

$$T_{f_{i}}^{ab} = \frac{\langle d|V|\chi + b \rangle \langle c + \chi|V|a \rangle}{(E_{a} + E_{b}) - (E_{c} + E_{\chi} + E_{b})} = \frac{1}{2E_{\chi}} \frac{1}{\sqrt{2E_{a}2E_{b}2E_{c}2E_{d}}} \frac{g_{a}g_{b}}{(E_{a} - E_{c} - E_{\chi})}$$

Getting back to the Lorentz invariant matrix elements expressed in terms of the properly normalized wave-functions $\mathcal{M}_{fb}^{ab} = \sqrt{2E_a 2E_b 2E_c 2E_d} T_{fb}^{ab}$ so that

$$\mathcal{M}_{fi}^{ab} = rac{1}{2E_{\chi}}rac{g_a g_b}{(E_a - E_c - E_{\chi})}$$

The second diagram would give $\mathcal{M}_{fi}^{ba} = \frac{1}{2E_{\chi}} \frac{g_a g_b}{(E_b - E_d - E_{\chi})}$

September 2023

・ロト ・回ト ・ ヨト ・ ヨト

Time ordered perturbation theory

Sum of the amplitudes

$$\mathcal{M}_{\textit{fi}} = \mathcal{M}_{\textit{fi}}^{\textit{ab}} + \mathcal{M}_{\textit{fi}}^{\textit{ba}}$$

gives

$$\mathcal{M}_{fi} = \frac{g_a g_b}{2E_{\chi}} \left(\frac{1}{E_b - E_d - E_{\chi}} + \frac{1}{E_a - E_c - E_{\chi}} \right) = \frac{g_a g_b}{(E_a - E_c)^2 - E_{\chi}^2}$$

considering that $E_b - E_d = E_c - E_a$.

Indeed, $\mathbf{p}_{\chi} = (\mathbf{p}_{b} - \mathbf{p}_{d}) = -(\mathbf{p}_{a} - \mathbf{p}_{c})$ so that $E_{\chi}^{2} = \rho_{\chi}^{2} + m_{\chi}^{2} = (\rho_{a} - \rho_{c})^{2} - m_{\chi}^{2}$ Hence,

$$\mathcal{M}_{fi} = rac{g_a g_b}{(E_a - E_c)^2 - (p_a - p_c)^2 - m_\chi^2} = rac{g_a g_b}{(\mathbf{p}_a - \mathbf{p}_c)^2 - m_\chi^2}$$

Finally, using the expression of the four-momentum of the exchanged particle χ as $\mathbf{q} = \mathbf{p}_a - \mathbf{p}_c$,

$$\mathcal{M}_{\mathit{fi}} = rac{g_{\mathsf{a}}g_{b}}{\mathbf{q}^{2}-m_{\chi}^{2}}$$

The $g_a g_b$ is related to the interaction vertices, and the term $\frac{1}{q^2 - m_\chi^2}$ is the propagator.

49/89

<ロ> <同> <同> < 回> < 回> < 回> = 三回

Dirac vs Schrödinger

Schrödinger

The Hamiltonian of the free-particle Schrödinger equation has the form $\hat{H}_S = \frac{\hat{p}^2}{2m}$ and commutes with the angular momentum operator $\hat{L} = \hat{r} \times \hat{p}$. As $\frac{dQ}{dt} = i < \psi |[\hat{H}, \hat{O}]|\psi >$, angular momentum is a conserved quantity in non-relativistic quantum mechanics.

Dirac

The free particle Hamiltonian is $\hat{H}_D = \alpha . \hat{p} + \beta m$. The commutator $[\hat{H}_D, \hat{L}] = [\alpha . \hat{p}, \hat{r} \times \hat{p}]$ can be determined to be

$$[\hat{H}_D, \hat{L}] = -i\alpha \times \hat{p}$$

Hence, the *orbital* angular momentum does *not* commute with the Dirac Hamiltonian and it is *not* a conserved quantity.

The same exercise on the *intrinsic* momentum (spin) $\hat{S} = 1/2\hat{\Sigma} = 1/2\begin{pmatrix} \sigma & 0\\ 0 & \sigma \end{pmatrix}$ leads to

$$[\hat{H}_D, \hat{S}] = i\alpha \times \hat{p}$$

Hence, \hat{S} does not commute either and does not correspond to a conserved quantity.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Dirac vs Schrödinger

Þ

Dirac

But, it is easy to see that

$$[\hat{H}_D, \hat{J}] = 0$$

if

$$\hat{J} = \hat{L} + \hat{S}$$

The total angular momentum is conserved.

Spin of the Dirac particles

Moreover, applying \hat{S}^2 on a Dirac Spinor gives $\hat{S}^2 = s(s+1)\psi = 3/4\psi$ The particle solutions of the Dirac equation have an intrinsic angular momentum

51/89
Helicity vs chirality

Why the helicity ?

Let's project the spin on the particle along its direction of propagation and normalize by the momentum

$$h = \frac{S.p}{p}$$

Taking a four-component Dirac spinor, one gets

$$\hat{h} = rac{\hat{\Sigma}.\hat{
ho}}{2\mathbf{p}} = 1/(2\mathbf{p}) \left(egin{array}{cc} \sigma.\hat{
ho} & 0 \ 0 & \sigma.\hat{
ho} \end{array}
ight)$$

Helicity and Dirac Hamiltonian eigentstates

From the form of the Dirac Hamiltonian, it can be shown that

$$[\hat{H}_D, \hat{\Sigma}.\hat{p}] = 0$$

Hence, we can find a basis of the spinors which are eigenstates of the Dirac Hamiltonian and of the helicity operators. For spin-half particles, we get left-handed and right-handed helicity states. However, the helicity is not Lorentz invariant and the helicity states should not be confused with the Chirality states (eigenstates of the γ^5 matrix). The two notions overlap when E >> m.

< p

52/89

External lines	
initial state electron	u(p)
initial state positron	$\bar{v}(\rho)$
initial state photon	ϵ^{μ}
final state electron	$\bar{u}(p)$
final state positron	v(p)
final state photon	$\epsilon^{\mu\star}$
inal state proton	e'

Internal lines and vertex

virtual photon $-ig_{\mu\nu}$
 $k^2+i,$
virtual electron $i\frac{p'}{p^2-\mu}$
interaction
(vertex)(vertex) $ie\gamma^{\mu}$

 $-ig_{\mu\nu}$ $k^2 + i\epsilon$ $-m^2+i\epsilon$

Matrix element

$$|\mathcal{M}|^2 = \sum_{fi}' T_{fi} T_{fi}^{\dagger}$$

Sum over final state, average over initial state

< 3 b

< 17 > <

æ

53/89

Simplest diagram with initial and final state of two electrons

- Simplest diagram with initial and final state of two electrons
- conserve electric charge and momentum at each vertex

- Simplest diagram with initial and final state of two electrons
- conserve electric charge and momentum at each vertex
- t channel only: $C(e^- + e^-) = -2e \neq C(\gamma) = 0$

- Simplest diagram with initial and final state of two electrons
- conserve electric charge and momentum at each vertex
- t channel only: $C(e^- + e^-) = -2e \neq C(\gamma) = 0$
- **p** conservation at each vertex \rightarrow 2 diagrams $q_{\gamma} = p_2 p_3 \neq p_2 p_4$

• Fermion arrow tip to end

F. Machefert (Cours Master 2 - X - PHE) Advanced Particle Physics - Ecole Polytechnique

1

• Fermion arrow tip to end

 $T_{fi} = [\overline{u}(\mathbf{p_4})]$

 $\bar{u}(\mathbf{p_3})$

]

- Fermion arrow tip to end
- Interaction

 $T_{fi} = [\overline{u}(\mathbf{p_4}) \qquad \overline{u}(\mathbf{p_3})$

]

55/89

Ż

- Fermion arrow tip to end
- Interaction

$$T_{fi} = [\bar{u}(\mathbf{p}_4)(-ie\gamma^{\mu}) \quad \bar{u}(\mathbf{p}_3)(-ie\gamma^{\nu})$$

1

Ż

- Fermion arrow tip to end
- Interaction

$$T_{fi} = [\bar{u}(\mathbf{p_4})(-ie\gamma^{\mu})u(\mathbf{p_1}) \qquad \bar{u}(\mathbf{p_3})(-ie\gamma^{\nu})u(\mathbf{p_2})]$$

Moeller Scattering

- Fermion arrow tip to end
- Interaction
- propagator (internal line)

$$T_{fi} = \begin{bmatrix} \bar{u}(\mathbf{p_4})(-ie\gamma^{\mu})u(\mathbf{p_1}) & \bar{u}(\mathbf{p_3})(-ie\gamma^{\nu})u(\mathbf{p_2}) \end{bmatrix}$$

55/89

Ż

- Fermion arrow tip to end
- Interaction
- propagator (internal line)

$$T_{fi} = \begin{bmatrix} \bar{u}(\mathbf{p_4})(-ie\gamma^{\mu})u(\mathbf{p_1})(\frac{-ig_{\mu\nu}}{k^2})\bar{u}(\mathbf{p_3})(-ie\gamma^{\nu})u(\mathbf{p_2}) \end{bmatrix}$$

- Fermion arrow tip to end
- Interaction
- propagator (internal line)
- second graph $\mathbf{p_3} \leftrightarrow \mathbf{p_4}$

$$T_{fi} = \begin{bmatrix} \bar{u}(\mathbf{p_4})(-ie\gamma^{\mu})u(\mathbf{p_1})(\frac{-ig_{\mu\nu}}{k^2})\bar{u}(\mathbf{p_3})(-ie\gamma^{\nu})u(\mathbf{p_2}) \end{bmatrix}$$

- Fermion arrow tip to end
- Interaction
- propagator (internal line)
- second graph $\mathbf{p_3}\leftrightarrow\mathbf{p_4}$

$$T_{fi} = \begin{bmatrix} \bar{u}(\mathbf{p_4})(-ie\gamma^{\mu})u(\mathbf{p_1})(\frac{-ig_{\mu\nu}}{k^2})\bar{u}(\mathbf{p_3})(-ie\gamma^{\nu})u(\mathbf{p_2}) \\ \bar{u}(\mathbf{p_3})(-ie\gamma^{\rho})u(\mathbf{p_1})(\frac{-ig_{\rho\sigma}}{k^2})\bar{u}(\mathbf{p_4})(-ie\gamma^{\sigma})u(\mathbf{p_2}) \end{bmatrix}$$

- Fermion arrow tip to end
- Interaction
- propagator (internal line)
- second graph $\mathbf{p}_3 \leftrightarrow \mathbf{p}_4$
- graphs fermion permutation: -

$$T_{fi} = \begin{bmatrix} \bar{u}(\mathbf{p_4})(-ie\gamma^{\mu})u(\mathbf{p_1})(\frac{-ig_{\mu\nu}}{k^2})\bar{u}(\mathbf{p_3})(-ie\gamma^{\nu})u(\mathbf{p_2}) \\ \bar{u}(\mathbf{p_3})(-ie\gamma^{\rho})u(\mathbf{p_1})(\frac{-ig_{\rho\sigma}}{k^2})\bar{u}(\mathbf{p_4})(-ie\gamma^{\sigma})u(\mathbf{p_2})] \end{bmatrix}$$

- Fermion arrow tip to end
- Interaction
- propagator (internal line)
- second graph $\mathbf{p}_3 \leftrightarrow \mathbf{p}_4$
- graphs fermion permutation: -

$$T_{fi} = \begin{bmatrix} \bar{u}(\mathbf{p}_4)(-ie\gamma^{\mu})u(\mathbf{p}_1)(\frac{-ig_{\mu\nu}}{k^2})\bar{u}(\mathbf{p}_3)(-ie\gamma^{\nu})u(\mathbf{p}_2) \\ - \bar{u}(\mathbf{p}_3)(-ie\gamma^{\rho})u(\mathbf{p}_1)(\frac{-ig_{\rho\sigma}}{k^2})\bar{u}(\mathbf{p}_4)(-ie\gamma^{\sigma})u(\mathbf{p}_2) \end{bmatrix}$$

- Fermion arrow tip to end
- Interaction
- propagator (internal line)
- second graph $\mathbf{p_3} \leftrightarrow \mathbf{p_4}$
- graphs fermion permutation: –

•
$$\mathbf{k} = f(\mathbf{p}_i)$$

$$T_{fi} = \begin{bmatrix} \bar{u}(\mathbf{p}_4)(-ie\gamma^{\mu})u(\mathbf{p}_1)(\frac{-ig_{\mu\nu}}{k^2})\bar{u}(\mathbf{p}_3)(-ie\gamma^{\nu})u(\mathbf{p}_2) \\ - \bar{u}(\mathbf{p}_3)(-ie\gamma^{\rho})u(\mathbf{p}_1)(\frac{-ig_{\rho\sigma}}{k^2})\bar{u}(\mathbf{p}_4)(-ie\gamma^{\sigma})u(\mathbf{p}_2)] \end{bmatrix}$$

- Fermion arrow tip to end
- Interaction
- propagator (internal line)
- second graph $\mathbf{p}_3 \leftrightarrow \mathbf{p}_4$
- graphs fermion permutation: —

•
$$\mathbf{k} = f(\mathbf{p}_i)$$

$$T_{fi} = [\bar{u}(\mathbf{p_4})(-ie\gamma^{\mu})u(\mathbf{p_1})(\frac{-ig_{\mu\nu}}{(\mathbf{p_4}-\mathbf{p_1})^2})\bar{u}(\mathbf{p_3})(-ie\gamma^{\nu})u(\mathbf{p_2}) - \bar{u}(\mathbf{p_3})(-ie\gamma^{\rho})u(\mathbf{p_1})(\frac{-ig_{\rho\sigma}}{(\mathbf{p_3}-\mathbf{p_1})^2})\bar{u}(\mathbf{p_4})(-ie\gamma^{\sigma})u(\mathbf{p_2})]$$

$$\begin{array}{ll} \frac{1}{i}T_{fi} &= & \frac{1}{i}[& \bar{u}(\mathbf{p}_{4})(-ie\gamma^{\mu})u(\mathbf{p}_{1})(\frac{-ig_{\mu\nu}}{(\mathbf{p}_{4}-\mathbf{p}_{1})^{2}})\bar{u}(\mathbf{p}_{3})(-ie\gamma^{\nu})u(\mathbf{p}_{2}) \\ &- & \bar{u}(\mathbf{p}_{3})(-ie\gamma^{\rho})u(\mathbf{p}_{1})(\frac{-ig_{\rho\sigma}}{(\mathbf{p}_{3}-\mathbf{p}_{1})^{2}})\bar{u}(\mathbf{p}_{4})(-ie\gamma^{\sigma})u(\mathbf{p}_{2})] \end{array}$$

$$\begin{split} \frac{1}{l} T_{fi} &= \frac{1}{l} [\quad \bar{u}(\mathbf{p}_{4})(-ie\gamma^{\mu})u(\mathbf{p}_{1})(\frac{-ig_{\mu\nu}}{(\mathbf{p}_{4}-\mathbf{p}_{1})^{2}})\bar{u}(\mathbf{p}_{3})(-ie\gamma^{\nu})u(\mathbf{p}_{2}) \\ &- \quad \bar{u}(\mathbf{p}_{3})(-ie\gamma^{\rho})u(\mathbf{p}_{1})(\frac{-ig_{\rho\sigma}}{(\mathbf{p}_{3}-\mathbf{p}_{1})^{2}})\bar{u}(\mathbf{p}_{4})(-ie\gamma^{\sigma})u(\mathbf{p}_{2})] \\ &= e^{2} [\quad \bar{u}(\mathbf{p}_{4})\gamma^{\mu}u(\mathbf{p}_{1})(\frac{g_{\mu\nu}}{(\mathbf{p}_{4}-\mathbf{p}_{1})^{2}})\bar{u}(\mathbf{p}_{3})\gamma^{\nu}u(\mathbf{p}_{2}) \\ &- \quad \bar{u}(\mathbf{p}_{3})\gamma^{\rho}u(\mathbf{p}_{1})(\frac{g_{\mu\nu}}{(\mathbf{p}_{3}-\mathbf{p}_{1})^{2}})\bar{u}(\mathbf{p}_{4})\gamma^{\sigma}u(\mathbf{p}_{2})] \end{split}$$

$$\begin{split} \frac{1}{7}T_{fi} &= \frac{1}{7}[\qquad \bar{u}(\mathbf{p}_{4})(-ie\gamma^{\mu})u(\mathbf{p}_{1})(\frac{-ig_{\mu\nu}}{(\mathbf{p}_{4}-\mathbf{p}_{1})^{2}})\bar{u}(\mathbf{p}_{3})(-ie\gamma^{\nu})u(\mathbf{p}_{2}) \\ &- \qquad \bar{u}(\mathbf{p}_{3})(-ie\gamma^{\rho})u(\mathbf{p}_{1})(\frac{-ig_{\rho\sigma}}{(\mathbf{p}_{3}-\mathbf{p}_{1})^{2}})\bar{u}(\mathbf{p}_{4})(-ie\gamma^{\sigma})u(\mathbf{p}_{2})] \\ &= e^{2}[\qquad \bar{u}(\mathbf{p}_{4})\gamma^{\mu}u(\mathbf{p}_{1})(\frac{g_{\mu\nu}}{(\mathbf{p}_{4}-\mathbf{p}_{1})^{2}})\bar{u}(\mathbf{p}_{3})\gamma^{\nu}u(\mathbf{p}_{2}) \\ &- \qquad \bar{u}(\mathbf{p}_{3})\gamma^{\rho}u(\mathbf{p}_{1})(\frac{g_{\rho\sigma}}{(\mathbf{p}_{3}-\mathbf{p}_{1})^{2}})\bar{u}(\mathbf{p}_{4})\gamma^{\sigma}u(\mathbf{p}_{2})] \\ |\mathcal{M}|^{2} &= \sum_{fi}' \qquad T_{fi}T_{fi}^{\dagger} \end{split}$$

$$\begin{split} \frac{1}{7} T_{fi} &= \frac{1}{7} [\quad \bar{u}(\mathbf{p}_4)(-ie\gamma^{\mu})u(\mathbf{p}_1)(\frac{-ig_{\mu\nu}}{(\mathbf{p}_4-\mathbf{p}_1)^2})\bar{u}(\mathbf{p}_3)(-ie\gamma^{\nu})u(\mathbf{p}_2) \\ &- \bar{u}(\mathbf{p}_3)(-ie\gamma^{\rho})u(\mathbf{p}_1)(\frac{-ig_{\rho\sigma}}{(\mathbf{p}_3-\mathbf{p}_1)^2})\bar{u}(\mathbf{p}_4)(-ie\gamma^{\sigma})u(\mathbf{p}_2)] \\ &= e^2 [\quad \bar{u}(\mathbf{p}_4)\gamma^{\mu}u(\mathbf{p}_1)(\frac{g_{\mu\nu}}{(\mathbf{p}_4-\mathbf{p}_1)^2})\bar{u}(\mathbf{p}_3)\gamma^{\nu}u(\mathbf{p}_2) \\ &- \bar{u}(\mathbf{p}_3)\gamma^{\rho}u(\mathbf{p}_1)(\frac{g_{\mu\sigma}}{(\mathbf{p}_3-\mathbf{p}_1)^2})\bar{u}(\mathbf{p}_4)\gamma^{\sigma}u(\mathbf{p}_2)] \\ |\mathcal{M}|^2 &= \sum_{fi}' \quad T_{fi}T_{fi}^{\dagger} \\ &= \frac{1}{4}\sum_{fi} \quad T_{fi}T_{fi}^{\dagger} \end{split}$$

Moeller Scattering

$$\begin{split} \frac{1}{i} T_{fi} &= \frac{1}{i} [\quad \bar{u}(\mathbf{p}_{4})(-ie\gamma^{\mu})u(\mathbf{p}_{1})(\frac{-ig_{\mu\nu}}{(\mathbf{p}_{4}-\mathbf{p}_{1})^{2}})\bar{u}(\mathbf{p}_{3})(-ie\gamma^{\nu})u(\mathbf{p}_{2}) \\ &- \quad \bar{u}(\mathbf{p}_{3})(-ie\gamma^{\rho})u(\mathbf{p}_{1})(\frac{-ig_{\rho\sigma}}{(\mathbf{p}_{3}-\mathbf{p}_{1})^{2}})\bar{u}(\mathbf{p}_{4})(-ie\gamma^{\sigma})u(\mathbf{p}_{2})] \\ &= e^{2} [\quad \bar{u}(\mathbf{p}_{4})\gamma^{\mu}u(\mathbf{p}_{1})(\frac{g_{\mu\nu}}{(\mathbf{p}_{4}-\mathbf{p}_{1})^{2}})\bar{u}(\mathbf{p}_{3})\gamma^{\nu}u(\mathbf{p}_{2}) \\ &- \quad \bar{u}(\mathbf{p}_{3})\gamma^{\rho}u(\mathbf{p}_{1})(\frac{g_{\rho\sigma}}{(\mathbf{p}_{3}-\mathbf{p}_{1})^{2}})\bar{u}(\mathbf{p}_{4})\gamma^{\sigma}u(\mathbf{p}_{2})] \\ |\mathcal{M}|^{2} &= \sum_{fi}' \quad T_{fi}T_{fi}^{\dagger} \\ &= \frac{1}{4}\sum_{fi} \quad T_{fi}T_{fi}^{\dagger} \end{split}$$

After a certain number of steps...

$$|\mathcal{M}|^{2} = \frac{64\pi^{2}\alpha^{2}}{t^{2}u^{2}}[(s-2m^{2})^{2}(t^{2}+u^{2})+ut(-4m^{2}s+12m^{4}+ut)]$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = |\mathcal{M}|^2 \frac{1}{64\pi^2 s}$$

 $0 \le \theta \le \pi/2$ (electrons)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = |\mathcal{M}|^2 \frac{1}{64\pi^2 s}$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = |\mathcal{M}|^2 \frac{1}{64\pi^2 s}$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\alpha^2}{st^2u^2}[s^2(t^2+u^2)+u^2t^2]$$

$$= \frac{\alpha^2}{s}[\frac{s^2}{u^2}+\frac{s^2}{t^2}+1]$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = |\mathcal{M}|^2 \frac{1}{64\pi^2 s}$$

$$t = -2\mathbf{p_1}\mathbf{p_3} = -2(\sqrt{s}/2\sqrt{s}/2 - s/4\cos\theta) = -s/2(1 - \cos\theta)$$

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{st^2 u^2} [s^2(t^2 + u^2) + u^2 t^2] \\ = \frac{\alpha^2}{s} [\frac{s^2}{u^2} + \frac{s^2}{t^2} + 1]$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = |\mathcal{M}|^2 \frac{1}{64\pi^2 s}$$

$$t = -2\mathbf{p_1}\mathbf{p_3} = -2(\sqrt{s}/2\sqrt{s}/2 - s/4\cos\theta) = -s/2(1 - \cos\theta)$$

$$u = -2\mathbf{p}_1\mathbf{p}_4 = -2(s/4 - \vec{p}_1\vec{p}_4) = -2(s/4 + \vec{p}_1\vec{p}_3)$$

$$\begin{array}{rcl} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} & = & \frac{\alpha^2}{\mathrm{s}t^2u^2}[\mathrm{s}^2(t^2+u^2)+u^2t^2] \\ & = & \frac{\alpha^2}{\mathrm{s}}[\frac{\mathrm{s}^2}{\mathrm{s}^2}+\frac{\mathrm{s}^2}{t^2}+1] \end{array}$$

1

Moeller Scattering

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = |\mathcal{M}|^2 \frac{1}{64\pi^2 s}$$

$$t = -2\mathbf{p_1}\mathbf{p_3} = -2(\sqrt{s}/2\sqrt{s}/2 - s/4\cos\theta) = -s/2(1 - \cos\theta)$$

$$u = -2\mathbf{p_1}\mathbf{p_4} = -2(s/4 - \vec{p_1}\vec{p_4}) = -2(s/4 + \vec{p_1}\vec{p_3})$$

$$= -2(s/4 + s/4\cos\theta) = -s/2(1 + \cos\theta)$$

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{st^2u^2}[s^2(t^2 + u^2) + u^2t^2]$$

$$= \frac{\alpha^2}{s}[\frac{s^2}{u^2} + \frac{s^2}{t^2} + 1]$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = |\mathcal{M}|^2 \frac{1}{64\pi^2 s}$$

 $0 \le heta \le \pi/2$ (electrons) $m_{
m e} pprox 0$

$$t = -2\mathbf{p_1}\mathbf{p_3} = -2(\sqrt{s}/2\sqrt{s}/2 - s/4\cos\theta) = -s/2(1 - \cos\theta)$$

$$u = -2\mathbf{p_1}\mathbf{p_4} = -2(s/4 - \vec{p_1}\vec{p_4}) = -2(s/4 + \vec{p_1}\vec{p_3})$$

$$= -2(s/4 + s/4\cos\theta) = -s/2(1 + \cos\theta)$$

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{st^2u^2}[s^2(t^2 + u^2) + u^2t^2]$$

$$= \frac{\alpha^2}{s}[\frac{s^2}{u^2} + \frac{s^2}{t^2} + 1]$$

$$= \frac{\alpha^2}{s}\frac{(3 + \cos^2\theta)^2}{\sin^4\theta}$$

Ż

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = |\mathcal{M}|^2 \frac{1}{64\pi^2 s}$$

 $0 \le \theta \le \pi/2$ (electrons) $m_{\rm e} \approx 0$

$$t = -2\mathbf{p_1}\mathbf{p_3} = -2(\sqrt{s}/2\sqrt{s}/2 - s/4\cos\theta) = -s/2(1 - \cos\theta)$$

$$u = -2\mathbf{p_1}\mathbf{p_4} = -2(s/4 - \vec{p_1}\vec{p_4}) = -2(s/4 + \vec{p_1}\vec{p_3})$$

$$= -2(s/4 + s/4\cos\theta) = -s/2(1 + \cos\theta)$$

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{st^2u^2}[s^2(t^2 + u^2) + u^2t^2]$$

$$= \frac{\alpha^2}{s}[\frac{s^2}{u^2} + \frac{s^2}{t^2} + 1]$$

$$= \frac{\alpha^2}{s}\frac{(3 + \cos^2\theta)^2}{\sin^4\theta}$$

 $s\frac{d\sigma}{d\Omega}$ is scale invariant: measure of the pointlikeness of a particle

FIG. 1. Storage-ring interaction region and detector system for 556-MeV/electron scattering experiment.

- Stanford-Princeton Storage ring
- $2e^-$ beams $\sqrt{s} = 556 MeV$

- limited detector acceptance
- differential cross section measurement and prediction

Ì

FIG. 3. Comparison of experimental result with Møller scattering modified by radiative corrections. Because the detector geometry is included, the theoretical curve is not symmetric about 90°.

- Typical t channel $heta = \mathbf{0} o d\sigma/d\Omega o \infty$
- Extremely good agreement between the measurement and the theory prediction
- e⁻e⁻ colliders discontinued (1971)

Homi Bhabha studied in the 1930s in Great Britain, worked in India afterwards

- $0 \le \theta \le \pi$
- t channel: $\sim \sin^{-4}(\theta/2)$
- s channel: $\sim 1 + \cos^2 \theta$

• PETRA e^+e^- collider $\sqrt{s} \le 35 \text{GeV}$ • JADE, TASSO, CELLO
Bhabha

- PETRA e^+e^- collider
- $\sqrt{s} \le 35 \text{GeV}$ • JADE, TASSO, CELLO
- total cross section

Bhabha

- PETRA e^+e^- collider $\sqrt{s} \le 35 \text{GeV}$
- JADE, TASSO, CELLO
- total cross section
- differential cross section

Ż

Bhabha

Bhabha

- Excellent agreement with QED
- Errors reflect statistics
- QED deviation : $s/\Lambda^2 < 5\%$ with $s = 35^2 \text{GeV}^2$
- $\rightarrow (\hbar c)/\Lambda = (0.197 \text{GeV} \cdot \text{fm})/\Lambda \approx 0.13 \cdot 10^{-3} \text{fm}$
- $N = \int L dt \cdot \sigma$
- Today Bhabha is a luminosity measurement

Ì

Electrical field

- acceleration
- charge times potential difference
- typical unit: eV

Magnetic field

- no acceleration
- B field unit: $[B] = \frac{Vs}{m^2}$
- force on charged particle in magnetic field:

$$F = q\vec{v} imes \vec{B} = q \frac{p}{m} B$$

- centrifugal force: $F = mv^2/r = p^2/(m \cdot r)$
- R = p/(qBc) (*c* because of natural units)

Acceleration

프 🕨 🗉 프

Acceleration

- strong fields difficult to achieve (breakdown)
- accelerate successively

⊒ ⊳

Ì

Acceleration

- strong fields difficult to achieve (breakdown)
- accelerate successively
- linear assembly: distance between potential diffs must increase

È

Acceleration

- strong fields difficult to achieve (breakdown)
- accelerate successively
- linear assembly: distance between potential diffs must increase
- circular assembly: several rotations possible

Acceleration

- strong fields difficult to achieve (breakdown)
- accelerate successively
- linear assembly: distance between potential diffs must increase
- circular assembly: several rotations possible

Phase focussing

- particle sees nominal (not maximal) field
- early particle: less field, less acceleration
- late particle: more field, stronger acceleration

LEP/LHC

- circular tunnel 28km circumference
- electron+positron: 210GeV
 - weak field
 - strong cavities
 - energy loss per turn: 6GeV ($\sim E^4/R$)
- LHC proton-proton (13TeV)
 - strong field 10T
 - energy loss per turn: 500keV

Lepton collider cavities

- LEP: up to 10MV/m
- ILC: 35-40 MV/m
- supraconducting (*T_{He}*)

Magnetic field LHC

F. Machefert (Cours Master 2 - X - PHE) Advanced Particle Physics - Ecole Polytechnique

< A > < > >

3

LEP/LHC

- circular tunnel 28km circumference
- electron+positron: 210GeV
 - weak field
 - strong cavities
 - energy loss per turn: 6GeV ($\sim E^4/R$)
- LHC proton-proton (13TeV)
 - strong field 10T
 - energy loss per turn: 500keV

Lepton collider cavities

- LEP: up to 10MV/m
- ILC: 35-40 MV/m

R

• supraconducting (T_{He})

Magnetic field LHC 7000 001/

$$= \frac{7000 \text{GeV}}{0.3 \cdot 10^9 m/s \cdot 10T \cdot 1e}$$

< 🗇 > < 🖻 >

э

LEP/LHC

- circular tunnel 28km circumference
- electron+positron: 210GeV
 - weak field
 - strong cavities
 - energy loss per turn: 6GeV ($\sim E^4/R$)
- LHC proton-proton (13TeV)
 - strong field 10T
 - energy loss per turn: 500keV

Lepton collider cavities

- LEP: up to 10MV/m
- ILC: 35-40 MV/m
- supraconducting (*T_{He}*)

Magnetic field LHC

$$R = \frac{7000 \text{GeV}}{0.3 \cdot 10^9 \text{ m/s} \cdot 10^{7} \cdot 1e}$$

= $\frac{7000 \text{GeV}}{0.3 \cdot 10^9 \text{ m/s} \cdot 10^{19} \text{ Ge}}$

< 🗇 > < 🖻 >

э

LEP/LHC

- circular tunnel 28km circumference
- electron+positron: 210GeV
 - weak field
 - strong cavities
 - energy loss per turn: 6GeV ($\sim E^4/R$)
- LHC proton-proton (13TeV)
 - strong field 10T
 - energy loss per turn: 500keV

Lepton collider cavities

- LEP: up to 10MV/m
- ILC: 35-40 MV/m
- supraconducting (T_{He})

Magnetic field LHC

$$R = \frac{7000 \text{GeV}}{0.3 \cdot 10^9 \text{m/s} \cdot 107 \cdot 1e} \\ = \frac{7000 \text{GeV}}{0.3 \cdot 10^9 \text{m/s} \cdot 10 \text{Vs/m}^2 \cdot 10^{-9} \text{Ge}} \\ \sim 2km$$

< 🗇 > < 🖻 >

э

LEP/LHC

- circular tunnel 28km circumference
- electron+positron: 210GeV
 - weak field
 - strong cavities
 - energy loss per turn: 6GeV ($\sim E^4/R$)
- LHC proton-proton (13TeV)
 - strong field 10T
 - energy loss per turn: 500keV

Lepton collider cavities

- LEP: up to 10MV/m
- ILC: 35-40 MV/m
- supraconducting (*T_{He}*)

Magnetic field LHC

• □ ▶ • □ ▶ • □ ▶ • □ ▶

• □ ▶ • □ ▶ • □ ▶ • □ ▶

LC the future?

- linear: no synchrotron radiation
- 40km
- polarization
- Iuminosity
- 250GeV to 1TeV (3TeV: CLIC)

• = •

Ì

Detection at high energies

• $a + b \rightarrow X \rightarrow$ neutral + charged

3 × 3

Detection at high energies

- $a + b \rightarrow X \rightarrow$ neutral + charged
- particles long-lived wrt detector volume

∍∍

Detection at high energies

- $a + b \rightarrow X \rightarrow$ neutral + charged
- particles long-lived wrt detector volume
- Tracker: charged particle momenta

Detection at high energies

- $a + b \rightarrow X \rightarrow$ neutral + charged
- particles long-lived wrt detector volume
- Tracker: charged particle momenta
- Calorimeter: neutral and charged particles

Detection at high energies

- $a + b \rightarrow X \rightarrow$ neutral + charged
- particles long-lived wrt detector volume
- Tracker: charged particle momenta
- Calorimeter: neutral and charged particles

Tracker		

Detection at high energies

- $a + b \rightarrow X \rightarrow$ neutral + charged
- particles long-lived wrt detector volume
- Tracker: charged particle momenta
- Calorimeter: neutral and charged particles

Tracker

measure points in B-field

Detection at high energies

- $a + b \rightarrow X \rightarrow$ neutral + charged
- particles long-lived wrt detector volume
- Tracker: charged particle momenta
- Calorimeter: neutral and charged particles

Tracker

- measure points in B-field
- reconstruct sagitta

Detection at high energies

- $a + b \rightarrow X \rightarrow$ neutral + charged
- particles long-lived wrt detector volume
- Tracker: charged particle momenta
- Calorimeter: neutral and charged particles

Tracker

- measure points in B-field
- reconstruct sagitta
- highest precision: silicon (dense, ~ 15μm)

Detection at high energies

- $a + b \rightarrow X \rightarrow$ neutral + charged
- particles long-lived wrt detector volume
- Tracker: charged particle momenta
- Calorimeter: neutral and charged particles

Tracker

- measure points in B-field
- reconstruct sagitta
- highest precision: silicon (dense, ~ 15μm)
- lower precision: TPC (gazeous)

Detection at high energies

- $a + b \rightarrow X \rightarrow$ neutral + charged
- particles long-lived wrt detector volume
- Tracker: charged particle momenta
- Calorimeter: neutral and charged particles

Tracker

- measure points in B-field
- reconstruct sagitta
- highest precision: silicon (dense, ~ 15μm)
- lower precision: TPC (gazeous)

Electromagnetic calorimeter

Detection at high energies

- $a + b \rightarrow X \rightarrow$ neutral + charged
- particles long-lived wrt detector volume
- Tracker: charged particle momenta
- Calorimeter: neutral and charged particles

Tracker

- measure points in B-field
- reconstruct sagitta
- highest precision: silicon (dense, ~ 15μm)
- lower precision: TPC (gazeous)

Electromagnetic calorimeter

•
$$e + A \rightarrow e + \gamma + A$$

Detection at high energies

- $a + b \rightarrow X \rightarrow$ neutral + charged
- particles long-lived wrt detector volume
- Tracker: charged particle momenta
- Calorimeter: neutral and charged particles

Tracker

- measure points in B-field
- reconstruct sagitta
- highest precision: silicon (dense, ~ 15μm)
- lower precision: TPC (gazeous)

Electromagnetic calorimeter

•
$$e + A \rightarrow e + \gamma + A$$

•
$$\gamma
ightarrow e^+e^-$$
 etc

F. Machefert (Cours Master 2 - X - PHE) Advanced Particle Physics - Ecole Polytechnique

Detection at high energies

- $a + b \rightarrow X \rightarrow$ neutral + charged
- particles long-lived wrt detector volume
- Tracker: charged particle momenta
- Calorimeter: neutral and charged particles

Tracker

- measure points in B-field
- reconstruct sagitta
- highest precision: silicon (dense, ~ 15μm)
- lower precision: TPC (gazeous)

Electromagnetic calorimeter

- $e + A \rightarrow e + \gamma + A$
- $\gamma
 ightarrow e^+e^-$ etc
- shower

Experimental Challenges

- bunches every 8m
- 25ns between crossings (fast readout)
- order 20 interactions per crossing
- trigger: 40MHz to 200Hz
- alignment
- calibration

ATLAS

- Silicon tracking (100M channels 2T)
- Calorimeter (100k)
- Muon chambers (toroid)

æ

Ż

A calorimeter tracker for the future?

• 3 >

<ロ> <同> <同> < 同> < 同> < 三>

æ

È

	Muon pair production	Introduction	
Introduction			
		19 19 19	34

• Remember the particle zoo

$\left(\begin{array}{c} u_L \\ d_L \end{array} \right)$	$\left(\begin{array}{c} c_L \\ s_L \end{array}\right)$	$\left(\begin{array}{c} t_L \\ b_L \end{array} \right)$
$\left(\begin{array}{c} \nu_{e_L} \\ e_L \end{array} \right)$	$\left(egin{array}{c} u_{\mu_{ m L}} \\ \mu_{ m L} \end{array} ight)$	$\left(\begin{array}{c} \nu_{\tau_{\rm L}} \\ \tau_{\rm L} \end{array}\right)$
u _R d _R e _R	$c_{ m R}$ $s_{ m R}$ $\mu_{ m R}$	$t_{ m R}$ $b_{ m R}$ $ au_{ m R}$
$egin{array}{c} \gamma \ m{g} \ W^{\pm}, Z^{\circ} \ H \end{array}$		

æ

- Remember the particle zoo
- γ and e

 $\left(\begin{array}{c} \\ e_L \end{array}\right) \left(\begin{array}{c} \\ \end{array}\right) \left(\begin{array}{c} \\ \end{array}\right) \left(\begin{array}{c} \\ \end{array}\right)$

< A > <

 e_R γ

크

÷

- Remember the particle zoo
- γ and e
- today: add μ and τ

 $\left(\begin{array}{c} e_{L} \end{array}\right) \left(\begin{array}{c} \mu_{L} \end{array}\right) \left(\begin{array}{c} \tau_{L} \end{array}\right)$ $e_{R} \qquad \mu_{R} \qquad \tau_{R}$ γ

- Remember the particle zoo
- γ and e
- today: add μ and τ

Definition

Charged Leptons: e, μ , τ Leptons: charged leptons plus neutrinos Jargon: leptons as charged leptons $\left(\begin{array}{c} e_{\rm L}\end{array}\right) \left(\begin{array}{c} \mu_{\rm L}\end{array}\right) \left(\begin{array}{c} \tau_{\rm L}\end{array}\right)$ $e_{\rm R} \qquad \mu_{\rm R} \qquad \tau_{\rm R}$ γ

73/89

m_0	=	0.105GeV	$\mu^+ e^-$
au	=	(2.197 · 10 ^{−6})s	PSI
C au	=	659m	

Ρ

		2	ī.	
- 3	Ś	č.	¥	ş.
1	ģ	箭	5	3
	1	4	2	

Properties of the μ							
$m_0 \ au$ au c au	= = =	0.105GeV (2.197 · 10 ⁻⁶)s 659m	$\mu^+ e^-$ PSI				

roperties	of the $ au$	

$$\begin{array}{rcl} m_0 &=& 1.777 {\rm GeV} & {\rm e^+e^-} \\ \tau &=& (2.906 \cdot 10^{-13}) {\rm s} & {\rm e^+e^-} \\ c\tau &=& 87 \mu {\rm m} \end{array}$$

イロト イヨト イヨト

	(a)
- 32	24125
- 34	1.100
- 54	51.0 C
- 64	875A.F
- 52	2159
	- W

Properties of the μ							
$egin{array}{c} m_0 \ au \ $	= = =	0.105GeV (2.197 · 10 ⁻⁶)s 659m	$\mu^+ e^-$ PSI				

Properties of t	the $ au$
-----------------	-----------

$$\begin{array}{rcl} m_0 & = & 1.777 {\rm GeV} & {\rm e}^+ {\rm e}^- \\ \tau & = & (2.906 \cdot 10^{-13}) {\rm s} & {\rm e}^+ {\rm e}^- \\ {\it c}\tau & = & 87 \mu {\rm m} \end{array}$$

$\mathcal{B}(\mu ightarrow \mathrm{e}\gamma)$	<	$5.7 \cdot 10^{-13}$
$\mathcal{B}(au ightarrow \mathrm{e}\gamma)$	<	$3.3 \cdot 10^{-8}$
$\mathcal{B}(au o \mu \gamma)$	<	$4.4 \cdot 10^{-8}$
CL	=	90%

イロト イポト イヨト イヨト

74/89

		2	ŝ		
3		27			ę
- 6					Ł
8	ş	fΤ	8	ŝ	1
	٩	4	0		

Properties of the μ							
$egin{array}{ccc} m_0 & = & \ au & = & \ au & au & = & \ au & au & au & = & \ au & au & au & au & = & \ au & au $	$= 0.105 \text{GeV} = (2.197 \cdot 10^{-6}) s = 659 \text{m}$	$\mu^+ e^-$ PSI					

$\mathcal{B}(\mu ightarrow \mathrm{e}\gamma)$	<	$5.7 \cdot 10^{-13}$
$\mathcal{B}(au ightarrow \mathrm{e}\gamma)$	<	$3.3 \cdot 10^{-8}$
$\mathcal{B}(au o \mu \gamma)$	<	$4.4 \cdot 10^{-8}$
CL	=	90%

Lepton numbers (additive QNs) $L_{
m e} \ \ L_{\mu} \ \ L_{ au}$

イロト イポト イヨト イヨト

		2	ļ		
- 3		8			ę
	č				i.
- 1	6			5	2
	1	94	é		

Properties of the μ					
$egin{array}{c} m_0 \ au \ $	= = =	0.105GeV (2.197 · 10 ⁻⁶)s 659m	$\mu^+ e^-$ PSI		

m ₀	=	1.777GeV	e^+e^-
au	=	(2.906 · 10 ^{−13})s	e^+e^-
${\it C} \tau$	=	87 μ m	

$\mathcal{B}(\mu ightarrow \mathrm{e}\gamma)$	<	$5.7 \cdot 10^{-13}$
$\mathcal{B}(au ightarrow \mathrm{e}\gamma)$	<	$3.3 \cdot 10^{-8}$
$\mathcal{B}(au o \mu \gamma)$	<	$4.4 \cdot 10^{-8}$
CL	=	90%

Lepton numbers (additive QNs)				
e-	L _e 1	L _μ 0	$L_{ au}$ 0	

< 67 ▶

< 3 b

æ

74/89

	2	22	١.	5
- 1		29		ş
	ē		c	ь.
	ы		4	a
		:1		,

Properties of the μ					
$egin{array}{c} m_0 \ au \ $	= = =	0.105GeV (2.197 · 10 ⁻⁶)s 659m	$\mu^+ e^-$ PSI		

m_0	=	1.777GeV	e ⁺ e ⁻
au	=	(2.906 · 10 ^{−13})s	e+e-
${\it C} au$	=	87 μ m	

e^- e^+	Le 1 -1	$\begin{array}{c} \mathcal{L}_{\mu} \\ 0 \\ 0 \end{array}$	$\begin{array}{c} \mathcal{L}_{ au} \\ 0 \\ 0 \end{array}$

Lepton numbers (additive QNs)

N N A

$\mathcal{B}(\mu \to e\gamma)$	<	$5.7 \cdot 10^{-13}$
$\mathcal{B}(au ightarrow \mathrm{e}\gamma)$	<	$3.3 \cdot 10^{-8}$
$\mathcal{B}(au o \mu \gamma)$	<	$4.4 \cdot 10^{-8}$
CL	=	90%

æ

,

	(a)
- 32	24125
- 34	1.100
- 54	51.0 C
- 64	875A.F
- 52	2159
	- W

Properties of the μ				
$egin{array}{c} m_0 \ au \ $	= = =	0.105GeV (2.197 · 10 ⁻⁶)s 659m	$\mu^+ e^-$ PSI	

m ₀	=	1.777GeV	e ⁺ e ⁻
au	=	(2.906 · 10 ^{−13})s	e^+e^-
C au	=	87 μ m	

$\mathcal{B}(\mu ightarrow \mathrm{e}\gamma)$	<	$5.7 \cdot 10^{-13}$
$\mathcal{B}(au ightarrow \mathrm{e}\gamma)$	<	$3.3 \cdot 10^{-8}$
$\mathcal{B}(au o \mu \gamma)$	<	$4.4 \cdot 10^{-8}$
CL	=	90%

Lepton numbers (additive QNs)						
$e^{-} e^{+} \mu^{-} \mu^{+} au^{+} au^{-} au^{+} au^{+}$	L _e 1 -1 0 0 0	$L_{\mu} \\ 0 \\ 1 \\ -1 \\ 0 \\ 0$	$L_{ au} = 0 = 0 = 0$ 0 = 0 = 0 = 0 = 0 = 0 1 = -1			

< fi > <

- E - F

æ

74/89

		2	ī.	
- 3	Ś	č.	¥	ş.
1	ģ	箭	5	3
	1	4	2	

Properties of the μ					
$egin{array}{c} m_0 \ au \ $	= = =	0.105GeV (2.197 · 10 ⁻⁶)s 659m	$\mu^+ e^-$ PSI		

m ₀	=	1.777GeV	e ⁺ e ⁻
au	=	(2.906 · 10 ^{−13})s	e^+e^-
C au	=	87 μ m	

μ^-		e-
	•	-thur

$\mathcal{B}(\mu ightarrow \mathrm{e}\gamma)$	<	$5.7 \cdot 10^{-13}$
$\mathcal{B}(au ightarrow \mathrm{e}\gamma)$	<	$3.3 \cdot 10^{-8}$
$\mathcal{B}(au o \mu \gamma)$	<	$4.4 \cdot 10^{-8}$
CL	=	90%

epton numbers (additive QNs)						
e- e+	<i>L</i> e 1	L_{μ} 0	L_{τ}			
μ^{μ^+}	0	1 _1	0			
τ^{μ}	Ő	0	1			
$ au^+$ non – leptons	0	0	-1 0			

토 🛌 🗄

$$e^+(p_2)e^-(p_1) \to \mu^+(p_4)\mu^-(p_3)$$

Ż

75/89

75/89

•
$$L_e^i = 1 - 1 = 0 = L_e^f$$

$$e^+(p_2)e^-(p_1) o \mu^+(p_4)\mu^-(p_3)$$

75/89

• $L_{\varphi}^{i} = 1 - 1 = 0 = L_{\varphi}^{f}$ • $L_{\mu}^{i} = 0 = 1 - 1 = L_{\mu}^{f}$

$$e^+(p_2)e^-(p_1) o \mu^+(p_4)\mu^-(p_3)$$

- $L_e^i = 1 1 = 0 = L_e^f$ $L_{\mu}^i = 0 = 1 1 = L_{\mu}^f$ Initial state

$$e^+(p_2)e^-(p_1) o \mu^+(p_4)\mu^-(p_3)$$

Ż

- $L_e^i = 1 1 = 0 = L_e^f$ $L_{\mu}^i = 0 = 1 1 = L_{\mu}^f$ Initial state

$$e^+(p_2)e^-(p_1) \to \mu^+(p_4)\mu^-(p_3)$$

Transition Amplitude

$$\frac{1}{i}T_{fi} = \frac{1}{i}[\bar{v}(\mathbf{p}_2)(-ie\gamma^{\mu})u(\mathbf{p}_1)]$$

- $L_e^i = 1 1 = 0 = L_e^f$ $L_{\mu}^i = 0 = 1 1 = L_{\mu}^f$ Initial state
- Final state

$$e^+(p_2)e^-(p_1) \to \mu^+(p_4)\mu^-(p_3)$$

Transition Amplitude

$$\frac{1}{i}T_{fi} = \frac{1}{i}[\bar{v}(\mathbf{p}_2)(-ie\gamma^{\mu})u(\mathbf{p}_1)]$$

- $L_e^i = 1 1 = 0 = L_e^f$ $L_{\mu}^i = 0 = 1 1 = L_{\mu}^f$ Initial state
- Final state

$$e^+(p_2)e^-(p_1) \to \mu^+(p_4)\mu^-(p_3)$$

Transition Amplitude

$$\frac{1}{i}T_{fi} = \frac{1}{i}[\bar{\nu}(\mathbf{p}_2)(-ie\gamma^{\mu})u(\mathbf{p}_1) \qquad \bar{u}(\mathbf{p}_3)(-ie\gamma^{\nu})v(\mathbf{p}_4)]$$

- $L_{e}^{i} = 1 1 = 0 = L_{e}^{f}$ $L_{\mu}^{i} = 0 = 1 1 = L_{\mu}^{f}$ Initial state
- Final state
- Photon Propagator

$$e^+(p_2)e^-(p_1) o \mu^+(p_4)\mu^-(p_3)$$

Transition Amplitude

$$\frac{1}{i}T_{fi} = \frac{1}{i}[\bar{v}(\mathbf{p}_2)(-ie\gamma^{\mu})u(\mathbf{p}_1) \qquad \bar{u}(\mathbf{p}_3)(-ie\gamma^{\nu})v(\mathbf{p}_4)]$$

- $L_{e}^{i} = 1 1 = 0 = L_{e}^{f}$ $L_{\mu}^{i} = 0 = 1 1 = L_{\mu}^{f}$ Initial state
- Final state
- Photon Propagator

$$e^+(p_2)e^-(p_1) \to \mu^+(p_4)\mu^-(p_3)$$

Transition Amplitude

$$\frac{1}{i}T_{fi} = \frac{1}{i}[\bar{\nu}(\mathbf{p}_2)(-ie\gamma^{\mu})u(\mathbf{p}_1)\frac{-ig_{\mu\nu}}{k^2}\bar{u}(\mathbf{p}_3)(-ie\gamma^{\nu})\nu(\mathbf{p}_4)]$$

- $L_{e}^{i} = 1 1 = 0 = L_{e}^{f}$ $L_{\mu}^{i} = 0 = 1 1 = L_{\mu}^{f}$ Initial state
- Final state
- Photon Propagator

$$e^+(p_2)e^-(p_1) \to \mu^+(p_4)\mu^-(p_3)$$

Transition Amplitude

$$\frac{1}{i}T_{fi} = \frac{1}{i}[\bar{v}(\mathbf{p}_2)(-ie\gamma^{\mu})u(\mathbf{p}_1)\frac{-ig_{\mu\nu}}{k^2}\bar{u}(\mathbf{p}_3)(-ie\gamma^{\nu})v(\mathbf{p}_4)]$$

$$= e^{2}[\bar{v}(\mathbf{p}_{2})\gamma^{\mu}u(\mathbf{p}_{1})\frac{g_{\mu\nu}}{s}\bar{u}(\mathbf{p}_{3})\gamma^{\nu}v(\mathbf{p}_{4})]$$

- $L_{e}^{i} = 1 1 = 0 = L_{e}^{f}$ $L_{\mu}^{i} = 0 = 1 1 = L_{\mu}^{f}$ Initial state
- Final state
- Photon Propagator

$$e^+(p_2)e^-(p_1) o \mu^+(p_4)\mu^-(p_3)$$

Transition Amplitude

$$\frac{1}{i}T_{fi} = \frac{1}{i}[\bar{\nu}(\mathbf{p}_2)(-ie\gamma^{\mu})u(\mathbf{p}_1)\frac{-ig_{\mu\nu}}{k^2}\bar{u}(\mathbf{p}_3)(-ie\gamma^{\nu})v(\mathbf{p}_4)]$$

$$= e^{2}[\bar{\nu}(\mathbf{p}_{2})\gamma^{\mu}u(\mathbf{p}_{1})\frac{g_{\mu\nu}}{s}\bar{u}(\mathbf{p}_{3})\gamma^{\nu}\nu(\mathbf{p}_{4})]$$

$$= - \frac{e^2}{s} [\bar{v}(\mathbf{p_2}) \gamma^{\mu} u(\mathbf{p_1}) \bar{u}(\mathbf{p_3}) \gamma_{\mu} v(\mathbf{p_4})]$$

75/89

useful formula

$$\begin{array}{rcl} \gamma_{0} & = & g_{\mu 0} \gamma^{0} & = & \gamma^{0} \\ \gamma_{k} & = & g_{\mu k} \gamma^{k} & = & -\gamma^{k} \\ \overline{y} & = & u^{\dagger} \gamma^{0} & = & u^{\dagger} \gamma_{0} \\ \gamma^{\mu} \gamma^{\dagger} & = & \gamma^{0} \gamma^{\mu} \gamma^{0} \\ \gamma^{\mu} \gamma^{\dagger} & = & g_{\mu \nu} (\gamma^{\nu})^{\dagger} = g_{\mu \nu} (\gamma^{0} \gamma^{\nu} \gamma^{0}) & = & \gamma^{0} \gamma_{\mu} \gamma^{0} \\ \gamma^{0} \gamma^{0} & = & \mathbf{1}_{4} \end{array}$$

Element matrix squared

$[\bar{v}(\mathbf{p}_2)\gamma^{\nu}u(\mathbf{p}_1)\bar{u}(\mathbf{p}_3)\gamma_{\nu}v(\mathbf{p}_4)]^{\dagger}$

F. Machefert (Cours Master 2 - X - PHE) Advanced Particle Physics - Ecole Polytechnique

Useful Formula

$$egin{array}{rcl} \gamma_0&=&g_{\mu 0}\gamma^0&=&\gamma^0\ \gamma_k&=&g_{\mu k}\gamma^k&=&-\gamma^k\ ar{u}&=&u^\dagger\gamma^0&=&u^\dagger\gamma_0 \end{array}$$

Insert

$[\bar{v}(\mathbf{p}_2)\gamma^{\nu}u(\mathbf{p}_1)\bar{u}(\mathbf{p}_3)\gamma_{\nu}v(\mathbf{p}_4)]^{\dagger}$

F. Machefert (Cours Master 2 - X - PHE) Advanced Particle Physics - Ecole Polytechnique Sep

< (T) >

æ

Ż

Useful Formula

Insert

 $[\bar{v}(\mathbf{p}_2)\gamma^{\nu}u(\mathbf{p}_1)\bar{u}(\mathbf{p}_3)\gamma_{\nu}v(\mathbf{p}_4)]^{\dagger}$

$$= [v^{\dagger}(\mathbf{p}_2)\gamma^0\gamma^{\nu}u(\mathbf{p}_1)u^{\dagger}(\mathbf{p}_3)\gamma^0\gamma_{\nu}v(\mathbf{p}_4)]^{\dagger}$$

∃ ⊳

Useful Formula

Insert

 $[\bar{v}(\mathbf{p}_2)\gamma^{\nu}u(\mathbf{p}_1)\bar{u}(\mathbf{p}_3)\gamma_{\nu}v(\mathbf{p}_4)]^{\dagger}$

- $= [v^{\dagger}(\mathbf{p_2})\gamma^0\gamma^{\nu}u(\mathbf{p_1})u^{\dagger}(\mathbf{p_3})\gamma^0\gamma_{\nu}v(\mathbf{p_4})]^{\dagger}$
- $= [v^{\dagger}(\mathbf{p_4})(\gamma_{\nu})^{\dagger}(\gamma^0)^{\dagger}(u^{\dagger})^{\dagger}(\mathbf{p_3})u^{\dagger}(\mathbf{p_1})(\gamma^{\nu})^{\dagger}(\gamma^0)^{\dagger}(v^{\dagger})^{\dagger}(\mathbf{p_2})]$

3. 3

Useful Formula

Insert

 $[\bar{v}(\mathbf{p}_2)\gamma^{\nu}u(\mathbf{p}_1)\bar{u}(\mathbf{p}_3)\gamma_{\nu}v(\mathbf{p}_4)]^{\dagger}$

- $[v^{\dagger}(\mathbf{p_2})\gamma^0\gamma^{\nu}u(\mathbf{p_1})u^{\dagger}(\mathbf{p_3})\gamma^0\gamma_{\nu}v(\mathbf{p_4})]^{\dagger}$ =
- $[v^{\dagger}(\mathbf{p_4})(\gamma_{\nu})^{\dagger}(\gamma^0)^{\dagger}(u^{\dagger})^{\dagger}(\mathbf{p_3})u^{\dagger}(\mathbf{p_1})(\gamma^{\nu})^{\dagger}(\gamma^0)^{\dagger}(v^{\dagger})^{\dagger}(\mathbf{p_2})]$ =
- $[v^{\dagger}(\mathbf{p_4})(\gamma_{\nu})^{\dagger}(\gamma^0)^{\dagger}u(\mathbf{p_3})u^{\dagger}(\mathbf{p_1})(\gamma^{\nu})^{\dagger}(\gamma^0)^{\dagger}v(\mathbf{p_2})]$ =

< ⊒ >

Useful Formula

$$egin{array}{rcl} (\gamma^\mu)^\dagger &=& \gamma^0\gamma^\mu\gamma^0\ (\gamma_\mu)^\dagger &=& g_{\mu
u}(\gamma^\nu)^\dagger &=& g_{\mu
u}(\gamma^\nu)^\dagger &=& g_{\mu
u}(\gamma^0\gamma^
u\gamma^0) &=& \gamma^0\gamma_\mu\gamma^0 \end{array}$$

Insert

 $[\bar{v}(\mathbf{p}_2)\gamma^{\nu}u(\mathbf{p}_1)\bar{u}(\mathbf{p}_3)\gamma_{\nu}v(\mathbf{p}_4)]^{\dagger}$

- $[v^{\dagger}(\mathbf{p}_2)\gamma^0\gamma^{\nu}u(\mathbf{p}_1)u^{\dagger}(\mathbf{p}_3)\gamma^0\gamma_{\nu}v(\mathbf{p}_4)]^{\dagger}$ =
- $[v^{\dagger}(\mathbf{p_4})(\gamma_{\nu})^{\dagger}(\gamma^0)^{\dagger}(u^{\dagger})^{\dagger}(\mathbf{p_3})u^{\dagger}(\mathbf{p_1})(\gamma^{\nu})^{\dagger}(\gamma^0)^{\dagger}(v^{\dagger})^{\dagger}(\mathbf{p_2})]$ =
- $[v^{\dagger}(\mathbf{p_4})(\gamma_{\nu})^{\dagger}(\gamma^0)^{\dagger}u(\mathbf{p_3})u^{\dagger}(\mathbf{p_1})(\gamma^{\nu})^{\dagger}(\gamma^0)^{\dagger}v(\mathbf{p_2})]$ =

∃ >

-

Useful Formula

$$egin{array}{rcl} (\gamma^\mu)^\dagger &=& \gamma^0\gamma^\mu\gamma^0\ (\gamma_\mu)^\dagger &=& g_{\mu
u}(\gamma^\nu)^\dagger &=& g_{\mu
u}(\gamma^\nu)^\dagger &=& g_{\mu
u}(\gamma^0\gamma^
u\gamma^0) &=& \gamma^0\gamma_\mu\gamma^0 \end{array}$$

Insert

 $[\bar{v}(\mathbf{p}_2)\gamma^{\nu}u(\mathbf{p}_1)\bar{u}(\mathbf{p}_3)\gamma_{\nu}v(\mathbf{p}_4)]^{\dagger}$

- $= [v^{\dagger}(\mathbf{p}_2)\gamma^0\gamma^{\nu}u(\mathbf{p}_1)u^{\dagger}(\mathbf{p}_3)\gamma^0\gamma_{\nu}v(\mathbf{p}_4)]^{\dagger}$
- $= [v^{\dagger}(\mathbf{p_4})(\gamma_{\nu})^{\dagger}(\gamma^0)^{\dagger}(u^{\dagger})^{\dagger}(\mathbf{p_3})u^{\dagger}(\mathbf{p_1})(\gamma^{\nu})^{\dagger}(\gamma^0)^{\dagger}(v^{\dagger})^{\dagger}(\mathbf{p_2})]$
- $= [v^{\dagger}(\mathbf{p}_4)(\gamma_{\nu})^{\dagger}(\gamma^0)^{\dagger}u(\mathbf{p}_3)u^{\dagger}(\mathbf{p}_1)(\gamma^{\nu})^{\dagger}(\gamma^0)^{\dagger}v(\mathbf{p}_2)]$
- $= [v^{\dagger}(\mathbf{p_4})\gamma^0\gamma_{\nu}\gamma^0\gamma^0\gamma^0\gamma^0 u(\mathbf{p_3})u^{\dagger}(\mathbf{p_1})\gamma^0\gamma^{\nu}\gamma^0\gamma^0\gamma^0\gamma^0\nu(\mathbf{p_2})]$

3

A (1) > A (2) > A (2) >

Useful Formula

$$\gamma^0 \gamma^0 = 1_4$$

Insert

 $[\bar{v}(\mathbf{p}_2)\gamma^{\nu}u(\mathbf{p}_1)\bar{u}(\mathbf{p}_3)\gamma_{\nu}v(\mathbf{p}_4)]^{\dagger}$

- $= [v^{\dagger}(\mathbf{p_2})\gamma^0\gamma^{\nu}u(\mathbf{p_1})u^{\dagger}(\mathbf{p_3})\gamma^0\gamma_{\nu}v(\mathbf{p_4})]^{\dagger}$
- $= [v^{\dagger}(\mathbf{p_4})(\gamma_{\nu})^{\dagger}(\gamma^0)^{\dagger}(u^{\dagger})^{\dagger}(\mathbf{p_3})u^{\dagger}(\mathbf{p_1})(\gamma^{\nu})^{\dagger}(\gamma^0)^{\dagger}(v^{\dagger})^{\dagger}(\mathbf{p_2})]$
- $= [v^{\dagger}(\mathbf{p}_4)(\gamma_{\nu})^{\dagger}(\gamma^0)^{\dagger}u(\mathbf{p}_3)u^{\dagger}(\mathbf{p}_1)(\gamma^{\nu})^{\dagger}(\gamma^0)^{\dagger}v(\mathbf{p}_2)]$
- $= [v^{\dagger}(\mathbf{p_4})\gamma^0\gamma_{\nu}\gamma^0\gamma^0\gamma^0\gamma^0u(\mathbf{p_3})u^{\dagger}(\mathbf{p_1})\gamma^0\gamma^{\nu}\gamma^0\gamma^0\gamma^0\gamma^0v(\mathbf{p_2})]$

• (1) • (

Ì

Useful Formula

$$\gamma^0\gamma^0$$
 = 1₄

Insert

 $[\bar{v}(\mathbf{p}_2)\gamma^{\nu}u(\mathbf{p}_1)\bar{u}(\mathbf{p}_3)\gamma_{\nu}v(\mathbf{p}_4)]^{\dagger}$

- $= [v^{\dagger}(\mathbf{p_2})\gamma^0\gamma^{\nu}u(\mathbf{p_1})u^{\dagger}(\mathbf{p_3})\gamma^0\gamma_{\nu}v(\mathbf{p_4})]^{\dagger}$
- $= [v^{\dagger}(\mathbf{p_4})(\gamma_{\nu})^{\dagger}(\gamma^0)^{\dagger}(u^{\dagger})^{\dagger}(\mathbf{p_3})u^{\dagger}(\mathbf{p_1})(\gamma^{\nu})^{\dagger}(\gamma^0)^{\dagger}(v^{\dagger})^{\dagger}(\mathbf{p_2})]$
- $= [v^{\dagger}(\mathbf{p}_4)(\gamma_{\nu})^{\dagger}(\gamma^0)^{\dagger}u(\mathbf{p}_3)u^{\dagger}(\mathbf{p}_1)(\gamma^{\nu})^{\dagger}(\gamma^0)^{\dagger}v(\mathbf{p}_2)]$
- $= [v^{\dagger}(\mathbf{p_4})\gamma^0\gamma_{\nu}\gamma^0\gamma^0\gamma^0\gamma^0u(\mathbf{p_3})u^{\dagger}(\mathbf{p_1})\gamma^0\gamma^{\nu}\gamma^0\gamma^0\gamma^0\gamma^0v(\mathbf{p_2})]$
- $= [v^{\dagger}(\mathbf{p_4})\gamma^0\gamma_{\nu}u(\mathbf{p_3})u^{\dagger}(\mathbf{p_1})\gamma^0\gamma^{\nu}v(\mathbf{p_2})]$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Ż

Useful Formula

Insert

- $[\bar{v}(\mathbf{p_2})\gamma^{\nu}u(\mathbf{p_1})\bar{u}(\mathbf{p_3})\gamma_{\nu}v(\mathbf{p_4})]^{\dagger}$
- $= [v^{\dagger}(\mathbf{p}_2)\gamma^0\gamma^{\nu}u(\mathbf{p}_1)u^{\dagger}(\mathbf{p}_3)\gamma^0\gamma_{\nu}v(\mathbf{p}_4)]^{\dagger}$
- $= [v^{\dagger}(\mathbf{p_4})(\gamma_{\nu})^{\dagger}(\gamma^0)^{\dagger}(u^{\dagger})^{\dagger}(\mathbf{p_3})u^{\dagger}(\mathbf{p_1})(\gamma^{\nu})^{\dagger}(\gamma^0)^{\dagger}(v^{\dagger})^{\dagger}(\mathbf{p_2})]$
- $= [v^{\dagger}(\mathbf{p}_4)(\gamma_{\nu})^{\dagger}(\gamma^0)^{\dagger}u(\mathbf{p}_3)u^{\dagger}(\mathbf{p}_1)(\gamma^{\nu})^{\dagger}(\gamma^0)^{\dagger}v(\mathbf{p}_2)]$
- $= [v^{\dagger}(\mathbf{p_4})\gamma^0\gamma_{\nu}\gamma^0\gamma^0\gamma^0\gamma^0u(\mathbf{p_3})u^{\dagger}(\mathbf{p_1})\gamma^0\gamma^{\nu}\gamma^0\gamma^0\gamma^0\gamma^0v(\mathbf{p_2})]$
- $= [v^{\dagger}(\mathbf{p_4})\gamma^0\gamma_{\nu}u(\mathbf{p_3})u^{\dagger}(\mathbf{p_1})\gamma^0\gamma^{\nu}v(\mathbf{p_2})]$
- $= [\bar{v}(\mathbf{p_4})\gamma_{\nu}u(\mathbf{p_3})\bar{u}(\mathbf{p_1})\gamma^{\nu}v(\mathbf{p_2})]$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Formula

Matrix Element

$$\begin{aligned} |\mathcal{M}|^2 &= \frac{e^4}{4s^2} \sum [\bar{v}_a(\mathbf{p}_2)\gamma_{ab}^{\mu} u_b(\mathbf{p}_1)\bar{u}_c(\mathbf{p}_3)\gamma_{\mu cd} v_d(\mathbf{p}_4)] \\ & [\bar{v}_e(\mathbf{p}_4)\gamma_{\nu ef} u_f(\mathbf{p}_3)\bar{u}_g(\mathbf{p}_1)\gamma_{oh}^{\nu} v_h(\mathbf{p}_2)] \end{aligned}$$

ъ

Ż

Formula

Matrix Element

$$\mathcal{M}|^{2} = \frac{e^{4}}{4s^{2}} \sum \left[\bar{v}_{a}(\mathbf{p}_{2}) \gamma^{\mu}_{ab} u_{b}(\mathbf{p}_{1}) \bar{u}_{c}(\mathbf{p}_{3}) \gamma_{\mu c d} v_{d}(\mathbf{p}_{4}) \right] \\ \left[\bar{v}_{e}(\mathbf{p}_{4}) \gamma_{\nu e f} u_{f}(\mathbf{p}_{3}) \bar{u}_{g}(\mathbf{p}_{1}) \gamma^{\nu}_{g h} v_{h}(\mathbf{p}_{2}) \right]$$

$$= \frac{e^4}{4s^2} \sum v_h(\mathbf{p}_2) \bar{v}_a(\mathbf{p}_2) \gamma_{ab}^{\mu} u_b(\mathbf{p}_1) \bar{u}_g(\mathbf{p}_1) \gamma_{gh}^{\nu} u_f(\mathbf{p}_3) \bar{u}_c(\mathbf{p}_3) \gamma_{\mu c d} v_d(\mathbf{p}_4) \bar{v}_e(\mathbf{p}_4) \gamma_{\nu e f}$$

æ

ъ

< 177 ▶

Ż

Formula

$$\sum_{f} M_{ff} = Tr(M)$$

Matrix Element

$$\mathcal{M}|^{2} = \frac{e^{4}}{4s^{2}} \sum [\bar{v}_{a}(\mathbf{p}_{2})\gamma^{\mu}_{ab}u_{b}(\mathbf{p}_{1})\bar{u}_{c}(\mathbf{p}_{3})\gamma_{\mu c d}v_{d}(\mathbf{p}_{4})] \\ [\bar{v}_{e}(\mathbf{p}_{4})\gamma_{\nu e f}u_{f}(\mathbf{p}_{3})\bar{u}_{g}(\mathbf{p}_{1})\gamma^{\nu}_{g h}v_{h}(\mathbf{p}_{2})]$$

$$= \frac{e^4}{4s^2} \sum v_h(\mathbf{p}_2) \bar{v}_a(\mathbf{p}_2) \gamma^{\mu}_{ab} u_b(\mathbf{p}_1) \bar{u}_g(\mathbf{p}_1) \gamma^{\nu}_{gh} u_f(\mathbf{p}_3) \bar{u}_c(\mathbf{p}_3) \gamma_{\mu cd} v_d(\mathbf{p}_4) \bar{v}_e(\mathbf{p}_4) \gamma_{\nu ef}$$

æ

イロン イヨン イヨン イヨン

Ľ

Formula

$$\sum_{f} M_{ff} = Tr(M)$$

Matrix Element

$$\mathcal{M}|^{2} = \frac{e^{4}}{4s^{2}} \sum [\bar{v}_{a}(\mathbf{p}_{2})\gamma^{\mu}_{ab}u_{b}(\mathbf{p}_{1})\bar{u}_{c}(\mathbf{p}_{3})\gamma_{\mu c d}v_{d}(\mathbf{p}_{4})] \\ [\bar{v}_{e}(\mathbf{p}_{4})\gamma_{\nu e f}u_{f}(\mathbf{p}_{3})\bar{u}_{g}(\mathbf{p}_{1})\gamma^{\nu}_{g h}v_{h}(\mathbf{p}_{2})]$$

$$= \frac{e^4}{4s^2} \sum V_h(\mathbf{p}_2) \bar{v}_a(\mathbf{p}_2) \gamma^{\mu}_{ab} u_b(\mathbf{p}_1) \bar{u}_g(\mathbf{p}_1) \gamma^{\nu}_{gh} \\ u_f(\mathbf{p}_3) \bar{u}_c(\mathbf{p}_3) \gamma_{\mu c d} V_d(\mathbf{p}_4) \bar{v}_e(\mathbf{p}_4) \gamma_{\nu e f}$$

$$= \frac{e^4}{4s^2} \sum_{s} Tr(v(\mathbf{p}_2)\bar{v}(\mathbf{p}_2)\gamma^{\mu}u(\mathbf{p}_1)\bar{u}(\mathbf{p}_1)\gamma^{\nu}) Tr(u(\mathbf{p}_3)\bar{u}(\mathbf{p}_3)\gamma_{\mu}v(\mathbf{p}_4)\bar{v}(\mathbf{p}_4)\gamma_{\nu})$$

æ

イロン イヨン イヨン イヨン

Ľ

Formula

$$\sum_{spin} u \bar{u} = \sum_{spin} v \bar{v} = p_{\nu} \gamma^{\nu}$$

Matrix Element

- $\begin{aligned} |\mathcal{M}|^2 &= \frac{e^4}{4s^2} \sum [\bar{v}_a(\mathbf{p}_2)\gamma_{ab}^{\mu} u_b(\mathbf{p}_1)\bar{u}_c(\mathbf{p}_3)\gamma_{\mu c d} v_d(\mathbf{p}_4)] \\ & [\bar{v}_e(\mathbf{p}_4)\gamma_{\nu e f} u_f(\mathbf{p}_3)\bar{u}_g(\mathbf{p}_1)\gamma_{g h}^{\nu} v_h(\mathbf{p}_2)] \end{aligned}$
 - $= \frac{e^4}{4s^2} \sum v_h(\mathbf{p}_2) \bar{v}_a(\mathbf{p}_2) \gamma^{\mu}_{ab} u_b(\mathbf{p}_1) \bar{u}_g(\mathbf{p}_1) \gamma^{\nu}_{gh} u_f(\mathbf{p}_3) \bar{u}_c(\mathbf{p}_3) \gamma_{\mu c d} v_d(\mathbf{p}_4) \bar{v}_e(\mathbf{p}_4) \gamma_{\nu e f}$
 - $= \frac{e^4}{4s^2} \sum_{\mathbf{s}} Tr(v(\mathbf{p}_2)\bar{v}(\mathbf{p}_2)\gamma^{\mu}u(\mathbf{p}_1)\bar{u}(\mathbf{p}_1)\gamma^{\nu})$ $Tr(u(\mathbf{p}_3)\bar{u}(\mathbf{p}_3)\gamma_{\mu}v(\mathbf{p}_4)\bar{v}(\mathbf{p}_4)\gamma_{\nu})$

A ₽

э

e)

Formula

$$\sum_{spin} u \bar{u} = \sum_{spin} v \bar{v} = p_{\nu} \gamma^{\nu}$$

Matrix Element

$$\mathcal{M}|^{2} = \frac{e^{4}}{4s^{2}} \sum [\bar{v}_{a}(\mathbf{p}_{2})\gamma^{\mu}_{ab}u_{b}(\mathbf{p}_{1})\bar{u}_{c}(\mathbf{p}_{3})\gamma_{\mu cd}v_{d}(\mathbf{p}_{4})] \\ [\bar{v}_{e}(\mathbf{p}_{4})\gamma_{\nu ef}u_{f}(\mathbf{p}_{3})\bar{u}_{g}(\mathbf{p}_{1})\gamma^{\nu}_{gh}v_{h}(\mathbf{p}_{2})]$$

$$= \frac{e^4}{4s^2} \sum V_h(\mathbf{p}_2) \bar{v}_a(\mathbf{p}_2) \gamma_{ab}^{\mu} u_b(\mathbf{p}_1) \bar{u}_g(\mathbf{p}_1) \gamma_{gt}^{\nu} u_f(\mathbf{p}_3) \bar{u}_c(\mathbf{p}_3) \gamma_{\mu cd} V_d(\mathbf{p}_4) \bar{v}_e(\mathbf{p}_4) \gamma_{\nu ef}$$

$$= \frac{\theta^4}{4s^2} \sum_{s} Tr(v(\mathbf{p}_2)\bar{v}(\mathbf{p}_2)\gamma^{\mu}u(\mathbf{p}_1)\bar{u}(\mathbf{p}_1)\gamma^{\nu}) Tr(u(\mathbf{p}_3)\bar{u}(\mathbf{p}_3)\gamma_{\mu}v(\mathbf{p}_4)\bar{v}(\mathbf{p}_4)\gamma_{\nu})$$

$$= \frac{e^4}{4s^2} \operatorname{Tr}(\not p_2 \gamma^{\mu} \not p_1 \gamma^{\nu}) \operatorname{Tr}(\not p_3 \gamma_{\mu} \not p_4 \gamma_{\nu})$$

イロン イヨン イヨン イヨン

æ

Ľ
Formula

$$Tr(\gamma^{lpha}\gamma^{eta}\gamma^{\gamma}\gamma^{\delta}) = 4(g^{lphaeta}g^{\gamma\delta} + g^{lpha\delta}g^{eta\gamma} - g^{lpha\gamma}g^{eta\delta})$$

Matrix Element

- $\begin{aligned} |\mathcal{M}|^2 &= \frac{e^4}{4s^2} \sum [\bar{\mathbf{v}}_a(\mathbf{p}_2)\gamma_{ab}^{\mu} u_b(\mathbf{p}_1)\bar{u}_c(\mathbf{p}_3)\gamma_{\mu c d} v_d(\mathbf{p}_4)] \\ & [\bar{v}_e(\mathbf{p}_4)\gamma_{\nu e f} u_f(\mathbf{p}_3)\bar{u}_g(\mathbf{p}_1)\gamma_{g h}^{\nu} v_h(\mathbf{p}_2)] \end{aligned}$
 - $= \frac{e^4}{4s^2} \sum v_h(\mathbf{p}_2) \bar{v}_a(\mathbf{p}_2) \gamma^{\mu}_{ab} u_b(\mathbf{p}_1) \bar{u}_g(\mathbf{p}_1) \gamma^{\nu}_{gh}$ $u_f(\mathbf{p}_3) \bar{u}_c(\mathbf{p}_3) \gamma_{\mu cd} v_d(\mathbf{p}_4) \bar{v}_e(\mathbf{p}_4) \gamma_{\nu ef}$

$$= \frac{e^4}{4s^2} \sum_{s} Tr(v(\mathbf{p}_2)\bar{v}(\mathbf{p}_2)\gamma^{\mu}u(\mathbf{p}_1)\bar{u}(\mathbf{p}_1)\gamma^{\nu}) Tr(u(\mathbf{p}_3)\bar{u}(\mathbf{p}_3)\gamma_{\mu}v(\mathbf{p}_4)\bar{v}(\mathbf{p}_4)\gamma_{\nu})$$

$$= \frac{e^4}{4s^2} \operatorname{Tr}(\not p_2 \gamma^{\mu} \not p_1 \gamma^{\nu}) \operatorname{Tr}(\not p_3 \gamma_{\mu} \not p_4 \gamma_{\nu})$$

Formula

$$Tr(\gamma^{lpha}\gamma^{eta}\gamma^{\gamma}\gamma^{\delta}) = 4(g^{lphaeta}g^{\gamma\delta} + g^{lpha\delta}g^{eta\gamma} - g^{lpha\gamma}g^{eta\delta})$$

Matrix Element

- $\begin{aligned} |\mathcal{M}|^2 &= \frac{e^4}{4s^2} \sum [\bar{v}_a(\mathbf{p}_2)\gamma^{\mu}_{ab}u_b(\mathbf{p}_1)\bar{u}_c(\mathbf{p}_3)\gamma_{\mu c d}v_d(\mathbf{p}_4)] \\ & [\bar{v}_e(\mathbf{p}_4)\gamma_{\nu e f}u_f(\mathbf{p}_3)\bar{u}_g(\mathbf{p}_1)\gamma^{\nu}_{g h}v_h(\mathbf{p}_2)] \end{aligned}$
 - $= \frac{e^4}{4s^2} \sum v_h(\mathbf{p}_2) \bar{v}_a(\mathbf{p}_2) \gamma^{\mu}_{ab} u_b(\mathbf{p}_1) \bar{u}_g(\mathbf{p}_1) \gamma^{\nu}_{gh} \\ u_f(\mathbf{p}_3) \bar{u}_c(\mathbf{p}_3) \gamma_{\mu cd} v_d(\mathbf{p}_4) \bar{v}_e(\mathbf{p}_4) \gamma_{\nu ef}$
 - $= \frac{e^4}{4s^2} \sum_{\mathbf{s}} Tr(v(\mathbf{p}_2)\bar{v}(\mathbf{p}_2)\gamma^{\mu}u(\mathbf{p}_1)\bar{u}(\mathbf{p}_1)\gamma^{\nu})$ $Tr(u(\mathbf{p}_3)\bar{u}(\mathbf{p}_3)\gamma_{\mu}v(\mathbf{p}_4)\bar{v}(\mathbf{p}_4)\gamma_{\nu})$
 - $= -\frac{e^4}{4s^2} \operatorname{Tr}(\not p_2 \gamma^{\mu} \not p_1 \gamma^{\nu}) \operatorname{Tr}(\not p_3 \gamma_{\mu} \not p_4 \gamma_{\nu})$
 - $= \frac{8e^4}{s^2}[({\bf p_1p_4})({\bf p_2p_3}) + ({\bf p_1p_3})({\bf p_2p_4})]$

Ż

Formula

$$\begin{aligned} (\mathbf{p}_1 - \mathbf{p}_3)^2 &= \mathbf{p}_1^2 + \mathbf{p}_3^2 - 2\mathbf{p}_1\mathbf{p}_3 \\ &= -2\mathbf{p}_1\mathbf{p}_3 \\ &= -2(\frac{\sqrt{2}}{2}\frac{\sqrt{5}}{2} - \frac{\sqrt{5}}{2}\frac{\sqrt{5}}{2}\cos\theta) \\ (\mathbf{p}_1 - \mathbf{p}_4)^2 &= -2\frac{5}{4}(1 + \cos\theta) \end{aligned}$$

Differential Cross section

$$\begin{array}{rcl} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} & = & |\mathcal{M}|^2 \frac{1}{64\pi^2 \mathrm{s}} \\ & = & \frac{8\mathrm{e}^4}{64\pi^2 \mathrm{s}^3} \left[(\mathbf{p}_1\mathbf{p}_4)(\mathbf{p}_2\mathbf{p}_3) + (\mathbf{p}_1\mathbf{p}_3)(\mathbf{p}_2\mathbf{p}_4) \right] \end{array}$$

Þ

Formula

$$\begin{aligned} (\mathbf{p}_1 - \mathbf{p}_3)^2 &= \mathbf{p}_1^2 + \mathbf{p}_3^2 - 2\mathbf{p}_1\mathbf{p}_3 \\ &= -2\mathbf{p}_1\mathbf{p}_3 \\ &= -2(\frac{\sqrt{s}}{2}\frac{\sqrt{s}}{2} - \frac{\sqrt{s}}{2}\frac{\sqrt{s}}{2}\cos\theta) \\ (\mathbf{p}_1 - \mathbf{p}_4)^2 &= -2\frac{s}{4}(1 + \cos\theta) \end{aligned}$$

Differential Cross section

$$\begin{aligned} \frac{d\sigma}{\Omega} &= |\mathcal{M}|^2 \frac{1}{64\pi^2 s} \\ &= \frac{8e^4}{64\pi^2 s^3} [(\mathbf{p_1}\mathbf{p_4})(\mathbf{p_2}\mathbf{p_3}) + (\mathbf{p_1}\mathbf{p_3})(\mathbf{p_2}\mathbf{p_4})] \\ &= \frac{2\alpha^2}{s^3} [\frac{s}{4}(1+\cos\theta) \cdot \frac{s}{4}(1+\cos\theta) \\ &+ \frac{s}{4}(1-\cos\theta) \cdot \frac{s}{4}(1-\cos\theta)] \end{aligned}$$

Ż

Formula

$$\begin{aligned} (\mathbf{p}_1 - \mathbf{p}_3)^2 &= \mathbf{p}_1^2 + \mathbf{p}_3^2 - 2\mathbf{p}_1\mathbf{p}_3 \\ &= -2\mathbf{p}_1\mathbf{p}_3 \\ &= -2(\frac{\sqrt{2}}{2}\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}\frac{\sqrt{2}}{2}\cos\theta) \\ (\mathbf{p}_1 - \mathbf{p}_4)^2 &= -2\frac{5}{4}(1 + \cos\theta) \end{aligned}$$

Differential Cross section

 $\frac{d}{d}$

$$\begin{split} \frac{\sigma}{\Omega} &= |\mathcal{M}|^2 \frac{1}{64\pi^2 s} \\ &= \frac{8e^4}{64\pi^2 s^3} [(\mathbf{p_1}\mathbf{p_4})(\mathbf{p_2}\mathbf{p_3}) + (\mathbf{p_1}\mathbf{p_3})(\mathbf{p_2}\mathbf{p_4})] \\ &= \frac{2\alpha^2}{s^3} [\frac{s}{4}(1 + \cos\theta) \cdot \frac{s}{4}(1 + \cos\theta) \\ &+ \frac{s}{4}(1 - \cos\theta) \cdot \frac{s}{4}(1 - \cos\theta)] \\ &= \frac{2\alpha^2}{s^3} [\frac{s^2}{16}(1 + \cos\theta)^2 + \frac{s^2}{16}(1 - \cos\theta)^2] \end{split}$$

Ż

Formula

$$\begin{aligned} (\mathbf{p}_1 - \mathbf{p}_3)^2 &= \mathbf{p}_1^2 + \mathbf{p}_3^2 - 2\mathbf{p}_1\mathbf{p}_3 \\ &= -2\mathbf{p}_1\mathbf{p}_3 \\ &= -2(\frac{\sqrt{s}}{2}\frac{\sqrt{s}}{2} - \frac{\sqrt{s}}{2}\frac{\sqrt{s}}{2}\cos\theta) \\ (\mathbf{p}_1 - \mathbf{p}_4)^2 &= -2\frac{s}{4}(1 + \cos\theta) \end{aligned}$$

Differential Cross section

$$\frac{d\sigma}{d\Omega} = |\mathcal{M}|^2 \frac{1}{64\pi^2 s}$$

$$= \frac{8\theta^4}{64\pi^2 s^3} [(\mathbf{p_1}\mathbf{p_4})(\mathbf{p_2}\mathbf{p_3}) + (\mathbf{p_1}\mathbf{p_3})(\mathbf{p_2}\mathbf{p_4})]$$

$$= \frac{2\alpha^2}{s^3} [\frac{s}{4}(1 + \cos\theta) \cdot \frac{s}{4}(1 + \cos\theta)$$

$$+ \frac{s}{4}(1 - \cos\theta) \cdot \frac{s}{4}(1 - \cos\theta)]$$

$$= \frac{2\alpha^2}{s^3} [\frac{s^2}{16}(1 + \cos\theta)^2 + \frac{s^2}{16}(1 - \cos\theta)^2]$$

$$= \frac{\alpha^2}{4s} [1 + \cos^2\theta]$$

Interpretation and experiments

$$rac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\sim(1-\cos heta)^2+(1+\cos heta)^2$$

- Do the two terms have a particular meaning?
- Only the spin can lead to an angular distribution that is not flat
- Photon: Spin-1, mass zero \rightarrow 2 dofs: ± 1
- classical ED: 2 polarizations, no rest frame...

80/89

Interpretation and experiments

Ż

Interpretation and experiments

- Lepton universality
- Agreement with QED

Ì

The predictions

Bohr

$$\vec{\mu} = Current \cdot Surface \cdot \vec{n}$$

$$= \frac{\theta}{t} \cdot \pi r^{2} \cdot \vec{n}$$

$$= \frac{\theta}{2\pi r/v} \cdot \pi r^{2} \cdot \vec{n}$$

$$= \frac{\theta}{2m}(mvr)\vec{n}$$

$$= \frac{\theta}{2m}(\hbar\ell)\vec{n}$$

$$= \mu_{B}\ell\vec{n}$$

$$\mu_{B} = 5.8 \cdot 10^{-5} eV/T$$

Intrinsic magnetic moment:

$$\vec{\mu} = g \cdot \mu_B \cdot \vec{S}$$

Definition

g is the gyromagnetic ratio, ratio of the magnetic dipole moment to the mechanical angular moment

The predictions

Bohr

$$\vec{\mu} = Current \cdot Surface \cdot \vec{n}$$

$$= \frac{e}{t} \cdot \pi r^{2} \cdot \vec{n}$$

$$= \frac{e}{2\pi r/v} \cdot \pi r^{2} \cdot \vec{n}$$

$$= \frac{e}{2m}(mvr)\vec{n}$$

$$= \frac{e}{2m}(\hbar \ell)\vec{n}$$

$$= \mu_{B}\ell\vec{n}$$

$$\mu_{B} = 5.8 \cdot 10^{-5} eV/T$$

Intrinsic magnetic moment:

$$\vec{\mu} = g \cdot \mu_B \cdot \vec{S}$$

Definition

g is the gyromagnetic ratio, ratio of the magnetic dipole moment to the mechanical angular moment

Dirac

$$\vec{J} = \vec{L} + \vec{S}$$

$$= \vec{L} + \frac{1}{2}\vec{\sigma}$$

$$\vec{\mu} = \frac{1}{2}\int \vec{x} \times \vec{j}$$

$$\vec{i} = -e\vec{\psi}\vec{\gamma}\psi$$

$$\langle f|\vec{\mu}|f\rangle \sim \frac{1}{2}\langle f|\vec{j}|f\rangle$$

$$= \frac{-e}{2}\langle f|\vec{\psi}\vec{\gamma}\psi|f\rangle$$

$$= \frac{-e}{2}\langle f|\vec{L} + \vec{\sigma}|f\rangle$$

$$\vec{S} = 1/2\vec{\sigma}$$

- The magnetic moment is anti-parallel with the Spin
- Dirac predicts g = 2!

Ż

The predictions

leads to:

$\Delta \mu$	\sim	$\alpha/\pi \cdot \frac{\theta}{2m}$
g	=	$2+lpha/\pi$
а	=	$\frac{g-2}{2}$
	=	$\frac{1}{2}\frac{\alpha}{\pi}$
	\sim	10 ⁻³

Order	Diagrams
1	1
2	7
3	72
4	891
5	12672

QED prediction <i>a</i> _c			
$\begin{array}{rcl} a_e & = & 1159652182.79 \cdot 10^{-12} \\ & \pm 7.79 \cdot 10^{-12} \end{array}$			
8th order: Phys. Rev. Lett. 99, 110406 (2007)			

Electron Precession in B-field

mv_p^2/r	=	ev _p B
mv_p/r	=	eB
$m\omega r/r$	=	eB
ω_0	=	eB/m
т	\rightarrow	$m\gamma$
ω_{C}	=	ω_0/γ

< 177 ▶

< 3 b

Þ

Electron Precession in B-field

Spin Precession in B-field

 $\begin{array}{l} \text{Magnetic torque:} \\ \Delta E = g\mu_B B = \hbar\omega_L \\ \omega_L = g(eB)/(2m) = \frac{1}{2}g\omega_0 \\ \text{Relativistic corrections (Thomas):} \\ \omega_P = \omega_L - \omega_T = \frac{g}{2}\omega_0 - \frac{\gamma-1}{\gamma}\omega_0 \end{array}$

3. 3

Þ

Electron Precession in B-field

mv_p^2/r	=	ev _p B
mv _p /r	=	eB
$m\omega r/r$	=	eВ
ω_0	=	eB/m
т	\rightarrow	$m\gamma$
ω_{C}	=	ω_0/γ

Spin Precession in B-field

 $\begin{array}{l} \text{Magnetic torque:} \\ \Delta E = g\mu_B B = \hbar \omega_L \\ \omega_L = g(eB)/(2m) = \frac{1}{2}g\omega_0 \\ \text{Relativistic corrections (Thomas):} \\ \omega_P = \omega_L - \omega_T = \frac{g}{2}\omega_0 - \frac{\gamma-1}{\gamma}\omega_0 \end{array}$

Phase difference

 $\Delta \omega = \omega_L - \omega_0 = a_e \omega_0$ Relativistic: $\Delta \omega = \omega_P - \omega_C = a_e \omega_0$

通 ト イ ヨ ト イ ヨ ト

э

Ì

Electron Precession in B-field

mv_p^2/r	=	ev _p B
mv_p/r	=	еĠ
$m\omega r/r$	=	eВ
ω_0	=	eB/m
т	\rightarrow	$m\gamma$
ω_{C}	=	ω_0/γ

Spin Precession in B-field

 $\begin{array}{l} \text{Magnetic torque:} \\ \Delta E = g\mu_B B = \hbar \omega_L \\ \omega_L = g(eB)/(2m) = \frac{1}{2}g\omega_0 \\ \text{Relativistic corrections (Thomas):} \\ \omega_P = \omega_L - \omega_T = \frac{g}{2}\omega_0 - \frac{\gamma-1}{\gamma}\omega_0 \end{array}$

Phase difference

 $\begin{aligned} \Delta \omega &= \omega_L - \omega_0 = a_{\rm e} \omega_0 \\ \text{Relativistic:} \ \Delta \omega &= \omega_P - \omega_C = a_{\rm e} \omega_0 \end{aligned}$

$a_{\rm e}$

 $\begin{array}{l} a_e=0: \mbox{ Spin in phase with electron rotation} \\ a_e \neq 0: \mbox{ Spin precession not in phase with} \\ \mbox{ precession of particle in B-field} \end{array}$

伺 ト イ ヨ ト イ ヨ ト

- Penning trap electrons (small scale experiment)
- δ/ν_C: relativistic shift
- f Cyclotron : 149 GHz
- f Anomaly : 173 MHZ

 $a_{\rm e}$

- $\begin{array}{l} a_{\rm e} = 115965218073(28) \cdot 10^{-14} \\ \alpha^{-1} = 137.035999084(51) \end{array}$
- test QED to 10⁻¹³
- determine α to 0.37ppb (\approx 10⁻⁹)
- natural scale: $m_{
 m e} \approx 0.5 MeV$

- muon liftime penning trap not feasible
- 24GeV protons to produce pions which decay to muons
- muons decay to electrons

- calorimeters detect the electrons
- excellent knowledge of B-field necessary

- electron counting rate varies as function of the precession of the spin
- natural scale of experiment $m_{\mu} \approx 0.105 GeV$

- Hadronic contribution (non QED) important (695)
- Prediction is mixture of calculation and measurement
- Supersymmetry?

È