
Institut Villebon Georges Charpak 2025-2026
Sciences et Sport

Interrogation - Physique

Vendredi 7 Novembre 2025

Durée : 3 heures (4 heures pour les tiers-temps).

ATTENTION : s’il y a trop de flèches qui manquent sur les vecteurs ou s’il manque des unités,
des points seront enlevés !

* = facile, ** = exercice d’application, *** = plus dur !

Exercice 1* : Vrai ou Faux (∼ 2 points)

Pour chacune des affirmations suivantes, dire si elle est Vraie ou Fausse. Justifier brièvement.

1/ Un système pseudo-isolé est nécessairement immobile.

2/ Le travail d’une force s’exprime en Joule.

3/ Deux vecteurs colinéaires ont un produit scalaire nul.

4/ Soit une masse subissant une force de gravitation et ayant un mouvement circulaire. La force
de gravitation peut avoir un travail non nul.

5/ Le moment cinétique d’un système est orthogonal à son vecteur position.

6/ Le moment d’inertie d’un système dépend de sa masse.

7/ L’énergie mécanique d’un système ne varie au cours du temps que s’il subit des forces non-
conservatives.

8/ Le moment d’une force
−→
F est colinéaire à

−→
F .

Exercice 2* : Bases, produit scalaire et produit vectoriel (∼ 1.5 points)

Suivant les cas, (−→u x,
−→u y,

−→u z) et (
−→u r,

−→u θ,
−→u z) sont des bases orthonormées directes. Dans les

calculs, vous ferez attention à ne pas confondre produit vectoriel et produit scalaire !

1/ Est-ce que (−→u z,−−→u y,−−→u x) est une base directe ou indirecte ?

2/ Est-ce que (−→u θ,
−→u r,−−→u z) est une base directe ou indirecte ?

3/ (2−→u x −−→u y + 5−→u z) ∧ (−−→u x + 2−→u y + 3−→u z)

4/ (−→u θ − 4−→u z) ∧ (2−→u r − 2−→u θ)

5/ 2−→u z ∧ [−→u y. (−2−→u x + 4−→u y)]
−→u y

6/ [(−→uy − 5−→u z) .
−→u y] (5

−→u y ∧ −→u x)
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Exercice 3* : Lucky Luke fait tourner son lasso (∼ 2.25 points)

Dans les exercices 3 à 5, on va étudier comment Lucky Luke lance son lasso pour attraper les
Daltons. On va décomposer le mouvement que Lucky Luke effectue en quelques secondes.

Figure 1 – a. Lucky Luke lance son lasso. b. Modélisation physique du problème. Le dessin n’est
pas à l’échelle. Sources : Morris, Shutterstock, ctic.

La première étape pour Lucky Luke est de faire tournoyer son lasso. Pour cela, on appelle M la
position de sa main droite qui tient le lasso. Lucky Luke fait tourner sa main selon un cercle de
centre O et de rayon R. Le mouvement du lasso se fait dans le plan Oxy. On adopte les notations
de la figure 1.b.

1/ Exprimer −→u r et −→u θ en fonction de −→u x,
−→u y et θ.

2/ Exprimer
−−→
OM dans la base (−→u x,

−→u y,
−→u z), puis dans la base (−→u r,

−→u θ,
−→u z).

3/ Exprimer la vitesse du point M , −→v , dans la base (−→u x,
−→u y,

−→u z), puis dans la base (−→u r,
−→u θ,−→u z).

4/ Exprimer l’accélération du point M , −→a , dans la base (−→u x,
−→u y,

−→u z), puis dans la base (−→u r,−→u θ,
−→u z).

5/ Exprimer le vecteur rotation −→ω en fonction de θ̇ et −→u z.

Exercice 4*** : Comment accélérer un lasso (∼ 4 points)

On modélise la boucle du lasso par une masse ponctuelle m en mouvement circulaire de rayon
R(t) autour de l’axe vertical Oz. On considère que la masse a une vitesse angulaire ω(t).

1/ Exprimer la vitesse tangentielle v(t) de la masse m en fonction de R(t) et de ω(t).

2/ Exprimer le moment d’inertie de la bouche du lasso par rapport au point O en fonction des
données du problème.

3/ Exprimer le moment cinétique de la boucle du lasso par rapport au point O en fonction des
données du problème.

4/ Énoncer le théorème du moment cinétique.

5/ Dans un premier temps, on néglige le poids du lasso et on suppose que la seule force qui

s’exerce sur le lasso est la tension due à la main et s’écrit
−→
F = F−→u r, où

−→u r est le vecteur
radial usuel dans le plan Oxy.
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(a) Exprimer le moment de la force
−→
F par rapport au point O.

(b) Si à t = 0 le rayon de la trajectoire vaut R0 et la vitesse tangentielle v0, exprimer le
moment cinétique du lasso par rapport au point O à tout instant.

(c) En déduire que R(t)v(t) = R0v0.

(d) Que doit faire Lucky Luke pour que la vitesse tangentielle du lasso augmente ?

(e) Application numérique : on suppose que m = 0,5 kg, le rayon initial R0 = 1,20 m, et
la vitesse tangentielle initiale v0 = 5 m.s−1. Si le nœud coulant de la boucle se resserre
jusqu’à R = 0,60 m (moitié du rayon initial), que vaut la vitesse tangentielle ?

6/ On va maintenant considérer un modèle plus réaliste où le lasso est une corde continue soumise
à la tension du bras et à son poids. La corde forme un cercle de centre O dont le rayon R(t)
peut a priori varier.

(a) On appelle λ la masse linéique (masse par unité de longueur) de la corde. Calculer le
moment d’inertie de la boucle du lasso (de masse totale m(t), de rayon R(t)) d’abord en
fonction de λ et R(t), puis en fonction de m(t) et R(t).

(b) Écrire l’équation qu’implique le théorème du moment cinétique pour le lasso, soumis au

moment du poids
−→
Γ P et à la tension exercée par Lucky Luke via son bras

−→
Γ T .

(c) Calculer le moment du poids par rapport à O. Pour cela, on intégrera sur tout le cercle
le moment du poids d’un petit morceau de corde. Le poids a-t-il une influence sur la
rotation du lasso ?

Figure 2 – Forces de tension s’exerçant sur un morceau de corde. Sources : Freepik.

(d) La tension exercée par le bras de Lucky Luke se transmet à la corde. Ainsi, un petit

élément d’arc d’angle dθ de la boucle subit une force
−→
T 1 à son extrémité θ+dθ/2 et une

force
−→
T 2 à son extrémité θ − dθ/2. Les deux forces ont une norme T et sont orientées

tangentiellement à la corde comme schématisé figure 2. Écrire le principe fondamental de
la dynamique pour le petit élément de corde et établir, dans l’approximation sin dθ/2 ≃
dθ/2, la relation entre T , ω et R(t).

(e) Quand la tension augmente, la boucle rétrécit (R diminue). Quelle est la conséquence
pour la vitesse de rotation ?
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Exercice 5* : Lucky Luke attrape les Daltons (∼ 2 points)

Figure 3 – Lucky Luke lance son lasso sur les Daltons. Source : Morris.
Une fois que le lasso (masse m, centre de masse G) a acquis une vitesse suffisante, pour essayer

d’atteindre les Daltons, Lucky Luke le lance à t = 0 d’une hauteur H0 et avec une vitesse −→v 0 qui
fait un angle α = 30o avec l’axe Oy. Le Dalton le plus proche de Lucky Luke est Averell à une
distance DAv, qui est aussi le plus grand (HAv). Vient ensuite Jack (DJa, HJa), William (DWi,
HWi) et Joe (DJo, HJo), comme schématisé figure 3.

1/ Déterminer la position (x(t), y(t), z(t)) du centre de masse du lasso à tout instant (on négligera
les frottements). Attention à bien adopter les notations du problème. Vous ferez en particulier
attention aux axes selon lesquels a lieu le mouvement.

2/ Déterminer l’équation de la trajectoire du lasso dans le plan Oyz, c’est-à-dire l’équation z(y).

3/ Avec le lasso, Lucky Luke ne peut attraper qu’un seul des Daltons. On suppose qu’un Dalton
est attrapé si le centre de masse du lasso arrive en haut de sa tête. On donne ∥−→v 0∥ = 10
m.s−1, H0 = 2 m, et

HAv = 2,20 m, DAv = 9,00 m,

HJa = 1,70 m, DJa = 9,50 m,

HWi = 1,23 m, DWi = 10,00 m,

HJo = 0,30 m, DJo = 11,00 m.

Déterminer si l’un des Daltons est attrapé.

4/ Le Dalton le plus dangereux est Joe. Quelle aurait due être la vitesse de lancer du lasso pour
que Joe soit attrapé et ainsi neutraliser les Daltons ?
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Exercice 6** : Les Daltons s’échappent (∼ 3 points)

Figure 4 – a. Les Daltons s’échappent. b. Modélisation de la balançoire sur laquelle les Daltons
sont assis. Source : Morris.

Malheureusement, les Daltons s’échappent et s’enfuient sur un chariot propulsé par un effet
balançoire. On appelle M1 la position de Joe (mJoe = 50 kg), M2 la position de William (mWill =
70 kg), M3 la position de Jack (mJack = 90 kg), M4 la position d’Averell (mAv = 100 kg). Le
mouvement de la balançoire (longueur L, masse totale M) se fait dans le plan Oxz, comme indiqué
figure 4, et la rotation se fait autour du point O, situé au centre de la balançoire. On note θ l’angle
que fait la balançoire avec l’horizontale.

1/ Quel est l’axe de rotation de la balance ?

2/ Exprimer
−−−→
OM1,

−−−→
OM2,

−−−→
OM3 et

−−−→
OM4 dans le repère (

−→ux,−→uy,−→uz) en fonction des distances OM1,
OM2, OM3, OM4 et θ.

3/ Faire un bilan des forces auxquelles est soumise la balançoire et calculer le moment de chaque
force en fonction des données du problème. Le poids de la balançoire influe-t-il le mouvement ?

4/ Initialement, OM1 = 1.5 m, OM2 = 0.2 m, OM3 = 1.25 m, OM4 = 1.6 m. De quel côté
penche la balançoire ?

5/ De combien doivent se déplacer Jack et Averell (initialement en M3 et M4 respectivement)
pour que la balançoire penche de l’autre côté ?
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Exercice 7** : Gravity (∼ 5 points)

Figure 5 – Source : Gravity.

Dans le film Gravity, des astronautes effectuent une mission de maintenance sur le télescope
spatial Hubble lorsque leur navette est détruite. Leur seul espoir semble être de rejoindre la Station
spatiale internationale, l’ISS. Le but de cet exercice est de définir dans quelles conditions ce voyage
spatial est possible.

On suppose que le télescope Hubble et l’ISS sont en orbite circulaire basse autour de la terre,
respectivement à 600 km et 400 km au-dessus de la Terre, dans le même plan. Le rayon de la Terre
est RT = 6400 km, G est la constante universelle de gravitation. On suppose que les astronautes
ne sont soumis qu’à l’attraction gravitationnelle de la Terre. On utilisera les coordonnées polaires

(r,θ) pour repérer la position des astronautes. On note
−→
k = −→u r ∧ −→u θ.

1/ Exprimer la force de gravitation exercée par la Terre, de masse M0, sur l’astronaute et son
équipement, de masse m. Donner l’expression de l’énergie potentielle de gravitation. On choi-
sira pour condition aux limites Ep(+∞) = 0.

2/ On suppose que l’astronaute a une orbite circulaire autour de la Terre. En utilisant le principe
fondamental de la dynamique,

a. Montrer que le mouvement est circulaire uniforme.

b. Calculer l’expression de la norme du vecteur vitesse −→v , en fonction de M0, G, m et R.

c. Calculer l’énergie mécanique de l’astronaute.

d. Calculer le travail de la force de gravitation lors d’un déplacement rdθ le long de l’orbite
circulaire.

e. Énoncer le théorème de l’énergie mécanique. Celle-ci varie-t-elle ici ?

3/ Que vaut le moment de la force de gravitation par rapport au centre O de la Terre ?

4/ Soit
−→
L le moment cinétique de l’astronaute par rapport à O. Exprimer les coordonnées de

−→
L

dans la base (−→u r,
−→u θ,

−→
k ) en fonction de m, r et ω = θ̇.

5/ Énoncer le théorème du moment cinétique et montrer que la trajectoire d’un astronaute est
plane.

6/ Établir la troisième loi de Kepler : la période T de l’orbite et le rayon R de l’orbite de
l’astronaute sont reliées par : T 2/R3 = C. Établir l’expression de la constante C en fonction
des données du problème.

7/ Déterminer numériquement la période TS de l’ISS, sachant que la période du télescope vaut
TH = 97 min. En déduire numériquement la vitesse du télescope Hubble vH , puis celle de la
station spatiale vS sur leur orbite respective.

8/ Pour rejoindre la station spatiale, l’astronaute envisage une orbite de transfert elliptique, dont
l’apogée de distance rH par rapport au centre de la Terre est sur l’orbite du télescope, et le
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périgée de distance rS par rapport au centre de la terre est sur lorbite de l’ISS. Pour une
orbite elliptique, on peut montrer que l’énergie mécanique de l’astronaute vaut

Em = − mM0G

(RS +RH)
. (1)

(a) Exprimer la vitesse de l’astronaute à l’apogée, en fonction de rH , TH et rS . Par analogie,
en déduire l’expression de la vitesse au périgée en fonction de rS , TS et rH . Calculer les
valeurs numériques. Techniquement, comment l’astronaute peut-il gérer sa vitesse ?

(b) Quelle est la durée de ce voyage ? Pour cela, on se souviendra que la troisième loi de
Kepler est valable aussi pour des orbites elliptiques avec R le demi-grand axe de l’ellipse.

Exercice 8** : Chute d’un arbre (∼ 2 points)

Figure 6 – Modélisation de la chute d’un arbre.

On assimile un arbre à une tige longue et homogène de longueur L et de masse totale m. On le
scie à sa base et l’arbre bascule en tournant autour de son point dappui O au sol. On suppose que
le point d’appui reste fixe (ne glisse pas) et on repère la position de larbre par langle θ qu’il fait
avec la verticale (figure 6). A t = 0, larbre fait un angle θ0 = 5o avec la verticale et est immobile.
On négligera les frottements.

1/ Quelle est la masse linéique (par unité de longueur) de l’arbre ?

2/ En intégrant les contributions des masses élémentaires, établir que le moment d’inertie de
l’arbre par rapport à O vaut I = mL2/3.

3/ Montrer que la vitesse angulaire de l’arbre lorsqu’il tombe s’exprime :

θ̇ =

√
3g

L
(cos θ0 − cos θ). (2)

On pourra multiplier l’équation différentielle obtenue de part et d’autre par θ̇ avant d’intégrer.

4/ Déterminer le temps de chute d’un arbre de L = 30 m. On donne, pour θ0 = 5o :

ˆ π
2

θ0

dθ√
(cos θ0 − cos θ)

= 5, 1. (3)
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